Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering-focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South-East Asia), remains largely unknown. Designing efficientThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Considerable technical developments over the past half century have enabled widespread application of electronic tags to the study of animals in the wild, including in freshwater environments. We review the constraints associated with freshwater telemetry and biologging and the technical developments relevant to their use. Technical constraints for tracking animals are often influenced by the characteristics of the animals being studied and the environment they inhabit. Collectively, they influence which and how technologies can be used and their relative effectiveness. Although radio telemetry has historically been the most commonly used technology in freshwater, passive integrated transponder (PIT) technology, acoustic telemetry and biologgers are becoming more popular. Most telemetry studies have focused on fish, although an increasing number have focused on other taxa, such as turtles, crustaceans and molluscs. Key technical developments for freshwater systems include: miniaturization of tags for tracking small-size life stages and species, fixed stations and coded tags for tracking large samples of animals over long distances and large temporal scales, inexpensive PIT systems that enable mass tagging to yield population-and community-level relevant sample sizes, incorporation of sensors into electronic tags, validation of tag attachment procedures with a focus on maintaining animal welfare, incorporation of different techniques (for example, genetics, stable isotopes) and peripheral technologies (for example, geographic information systems, hydroacoustics), development of novel analytical techniques, and extensive international collaboration. Innovations are still needed in tag miniaturization, data analysis and visualization, and in tracking animals over larger spatial scales (for example, pelagic areas of lakes) and in challenging environments (for example, large dynamic floodplain systems, under ice). There seems to be a particular need for adapting various global positioning system and satellite tagging approaches to freshwater. Electronic tagging provides a mechanism to collect detailed information from imperilled animals and species that have no direct economic value. Current and future advances will continue to improve our knowledge of the natural history of aquatic animals and ecological processes in freshwater ecosystems while facilitating evidence-based resource management and conservation.
Generating awareness of environmental conservation issues among the public is essential if there is an expectation of them to alter their behaviour, facilitate informed decisions and engage governments or regulatory authorities to take action. There are, however, exceedingly few public engagement success stories related to inland fishes and fisheries policy and resource allocation decisions. Inland aquatic resources and their associated fisheries provide employment, recreation, culture and, in developing regions, a considerable proportion of human nutrition and food security. Freshwater fishes are incredibly diverse but are among the most endangered organisms globally. Many threats to inland fisheries are driven largely by externalities to inland fisheries. The purpose of this paper is to draw attention to the role and plight of inland fishes and fisheries, and the need to generate the public and political will necessary to promote meaningful conservation. With this paper, the extent to which the scientific and environmental management communities have failed to engage the public in issues related to inland fishes and fisheries is characterized. Next, the barriers or factors that serve as the basis for the problem with public engagement are identified. The paper concludes by identifying strategies, including those focused on environmental education initiatives, for building the public and political will necessary to promote meaningful conservation of inland fishes and fisheries in developed and developing countries. Scientists, environmental managers, non-governmental organizations, politicians, regulatory authorities and the media all have important roles to play in overcoming challenges to inland fisheries. Failure to engage the public in freshwater conservation and management issues will impede efforts to stem the loss of freshwater habitats, fisheries and aquatic biodiversity. Thankfully, there are opportunities to learn from success stories related to other environmental issues and initiatives that have been successful in marine fish conservation.
Migration is a widespread but highly diverse component of many animal life histories. Fish migrate throughout the world's oceans, within lakes and rivers, and between the two realms, transporting matter, energy, and other species (e.g., microbes) across boundaries. Migration is therefore a process responsible for myriad ecosystem services. Many human populations depend on the presence of predictable migrations of fish for their subsistence and livelihoods. Although much research has focused on fish migration, many questions remain in our rapidly changing world. We assembled a Lennox et al. Fish Migration Questions diverse team of fundamental and applied scientists who study fish migrations in marine and freshwater environments to identify pressing unanswered questions. Our exercise revealed questions within themes related to understanding the migrating individual's internal state, navigational mechanisms, locomotor capabilities, external drivers of migration, the threats confronting migratory fish including climate change, and the role of migration. In addition, we identified key requirements for aquatic animal management, restoration, policy, and governance. Lessons revealed included the difficulties in generalizing among species and populations, and in understanding the levels of connectivity facilitated by migrating fishes. We conclude by identifying priority research needed for assuring a sustainable future for migratory fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.