We propose a new method to sum up electrostatic interactions in 2D slab geometries. It consists of a combination of two recently proposed methods, the 3D Ewald variant of Yeh and Berkowitz, J. Chem. Phys. 111 (1999) 3155, and the purely 2D method MMM2D by Arnold and Holm, to appear in Chem. Phys. Lett. 2002. The basic idea involves two steps. First we use a three dimensional summation method whose summation order is changed to sum up the interactions in a slab-wise fashion. Second we subtract the unwanted interactions with the replicated layers analytically. The resulting method has full control over the introduced errors. The time to evaluate the layer correction term scales linearly with the number of charges, so that the full method scales like an ordinary 3D Ewald method, with an almost linear scaling in a mesh based implementation. In this paper we will introduce the basic ideas, derive the layer correction term and numerically verify our analytical results.
Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo4C x (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density functional theory (DFT) calculations. The ZSM-5 anchoring sites are determined by evaluating infrared vibrational spectra for surface OH groups before and after Mo deposition. The spectroscopic results demonstrate that initial Mo oxide species preferentially anchors on framework Al sites and partially on Si sites on the external surface of the zeolite. In addition, Mo oxide deposition causes some dealumination, and a small fraction of Mo oxide species anchor on extraframework Al sites. Anchoring modes of Mo carbide nanoparticles are evaluated with DFT cluster calculations and with hybrid quantum mechanical and molecular mechanical (QM/MM) periodic structure calculations. Calculation results suggest that binding through two Mo atoms is energetically preferable for all Mo carbide nanoparticles on double Al-atom framework sites and external Si sites. On single Al-atom framework sites, the preferential binding mode depends on the particle composition. The calculations also suggest that Mo carbide nanoparticles with a C/Mo ratio greater than 1.5 are more stable on external Si sites and, thus, likely to migrate from zeolite pores onto the external surface of the zeolite. Therefore, in order to minimize such migration, the C/Mo ratio for zeolite-supported Mo carbide nanoparticles under hydrocarbon reaction conditions should be maintained below 1.5.
Conventional molecular dynamics (MD) simulations are seriously limited by the slow rate of diffusive mixing in their ability to predict lateral distributions of different lipid types within mixed-lipid bilayers using atomistic models. A method to overcome this limitation, using configuration-bias Monte Carlo (MC) "mutation" moves to transform lipids from one type to another in dynamic equilibrium, is demonstrated in binary fluid-phase mixtures of lipids whose tails differ in length by four carbons. The hybrid MC-MD method operates within a semigrand canonical ensemble, so that an equilibrium composition of the mixture is determined by a constant difference in chemical potential (Delta(mu)) chosen for the components. Within several nanoseconds, bilayer structures initiated as pure dipalmitoyl phosphatidylcholine (DPPC) or pure dilauroyl phosphatidylcholine (DLPC) converge to a common composition and structure in independent simulations conducted at the same Delta(mu). Trends in bilayer thickness, area per lipid, density distributions across the bilayer, and order parameters have been investigated at three mixture compositions and compared with results from the pure bilayers at 323 K. The mixtures showed a moderate increase in DPPC acyl tail sites crossing the bilayer midplane relative to pure DPPC. Correlations between lateral positions of the two lipid types within or across the bilayer were found to be weak or absent. While the lateral distribution is consistent with nearly ideal mixing, the dependence of composition on Delta(mu) indicates a positive excess free energy of mixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.