OBJECTIVE-We sought to determine the role of adipocyte death in obesity-induced adipose tissue (AT) inflammation and obesity complications.RESEARCH DESIGN AND METHODS-Male C57BL/6 mice were fed a high-fat diet for 20 weeks to induce obesity. Every 4 weeks, insulin resistance was assessed by intraperitoneal insulin tolerance tests, and epididymal (eAT) and inguinal subcutaneous AT (iAT) and livers were harvested for histological, immunohistochemical, and gene expression analyses.RESULTS-Frequency of adipocyte death in eAT increased from Ͻ0.1% at baseline to 16% at week 12, coincident with increases in 1) depot weight; 2) AT macrophages (ATM⌽s) expressing F4/80 and CD11c; 3) mRNA for tumor necrosis factor (TNF)-␣, monocyte chemotactic protein (MCP)-1, and interleukin (IL)-10; and 4) insulin resistance. ATM⌽s in crown-like structures surrounding dead adipocytes expressed TNF-␣ and IL-6 proteins. Adipocyte number began to decline at week 12. At week 16, adipocyte death reached ϳ80%, coincident with maximal expression of CD11c and inflammatory genes, loss (40%) of eAT mass, widespread collagen deposition, and accelerated hepatic macrosteatosis. By week 20, adipocyte number was restored with small adipocytes, coincident with reduced adipocyte death (fourfold), CD11c and MCP-1 gene expression (twofold), and insulin resistance (35%). eAT weight did not increase at week 20 and was inversely correlated with liver weight after week 12 (r ϭ Ϫ0. 85, P Ͻ 0.001). In iAT, adipocyte death was first detected at week 12 and remained Յ3%.CONCLUSIONS-These results implicate depot-selective adipocyte death and M⌽-mediated AT remodeling in inflammatory and metabolic complications of murine obesity. Diabetes
Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B-and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.immunometabolism | lymphocytes M ultiple studies support the concept that inflammation strongly associates with insulin resistance (IR), which, in addition to loss of islet function, defines type 2 diabetes (T2D) (1). Work implicating B cells in IR/T2D is limited. We showed B cells from T2D subjects secrete a proinflammatory cytokine profile, including an extraordinary inability to secrete the potent anti-inflammatory cytokine IL-10 and an elevated production of proinflammatory IL-8 compared with B cells from non-T2D subjects (2). Given the importance of B-cell IL-10 in preventing numerous inflammatory diseases (3, 4) and the links between IL-8 and T2D (5, 6), these data suggest that altered B-cell cytokine production plays an important role in initiating or promoting IR/T2D. Published analyses further support a role for B cells in IR and include studies of B cell-null New Zealand Obese (NZO) mice, which, in contrast to B cell-sufficient NZOs, fail to develop IR in response to obesity (7). These findings have been recently reproduced in studies showing obese B cell-null or B cell-depleted mice have less inflammation and IR than obese WT mice (8). Interestingly, T-cell cytokine production is decreased in obese B cell-null mouse adipose tissue (AT) (8), which raises the possibility that, in addition to production of a proinflammatory cytokine profile, B cells may function in IR by regulating the T cell-mediated inflammation known to drive disease pathogenesis (9, 10). We identified a proinflammatory T-cell ratio [defined by increased Th17 cells plus decreased regulatory T cells (Tregs)] in T2D patients that mirror...
Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMPhi). We tested the hypothesis that supplementation of an obesitogenic (high-fat) diet with whole blueberry (BB) powder protects against AT inflammation and IR. Male C57Bl/6j mice were maintained for 8 wk on 1 of 3 diets: low-fat (10% of energy) diet (LFD), high-fat (60% of energy) diet (HFD) or the HFD containing 4% (wt:wt) whole BB powder (1:1 Vaccinium ashei and V. corymbosum) (HFD+B). BB supplementation (2.7% of total energy) did not affect HFD-associated alterations in energy intake, metabolic rate, body weight, or adiposity. We observed an emerging pattern of gene expression in AT of HFD mice indicating a shift toward global upregulation of inflammatory genes (tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein 1, inducible nitric oxide synthase), increased M1-polarized ATMPhi (CD11c+), and increased oxidative stress (reduced glutathione peroxidase 3). This shift was attenuated or nonexistent in HFD+B-fed mice. Furthermore, mice fed the HFD+B were protected from IR and hyperglycemia coincident with reductions in adipocyte death. Salutary effects of BB on adipocyte physiology and ATMPhi gene expression may reflect the ability of BB anthocyanins to alter mitogen-activated protein kinase and nuclear factor-kappaB stress signaling pathways, which regulate cell fate and inflammatory genes. These results suggest that cytoprotective and antiinflammatory actions of dietary BB can provide metabolic benefits to combat obesity-associated pathology.
The role of adaptive immunity in obesity-associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T-cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4-22 weeks of a high (60% energy) fat diet (HFD). By week 6, eAT mass and stromal vascular cell (SVC) number increased 3-fold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, IFNγ, or regulated upon activation, normal T-cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (Mφ) were enriched 6-fold by week 8 (p < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFNγ and RANTES gene expression were detected by 20-22 weeks of HFD (p < 0.01), coincident with the resolution of eAT remodeling. HFD-induced T cell priming earlier in the obesity time course is suggested by (1) elevated (5-fold) IL-12p40 gene expression in eAT by week 12 (p ≤ 0.01) and (2) greater IFNγ secretion from PMA/ionophorestimulated eAT explants at week 6 (1 fold, p = 0.08) and week 12 (5 fold, p < 0.001). In summary, T cell enrichment and IFNγ gene induction occur subsequent to ATMφ recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFNγ production suggests the contribution of CD4+ and/or CD8+ effectors to cell-mediated immune responses promoting HFDinduced AT inflammation and IR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.