SUMMARY
The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO2 reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO2- induced fear deficit of ASIC1a-null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO2. These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO2 concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders.
Acid-sensing ion channel-1a (ASIC1a) contributes to multiple fear behaviors, however the site of ASIC1a action in behavior is not known. To explore a specific location of ASIC1a action, we expressed ASIC1a in the basolateral amygdala of ASIC1a-/-mice using viral vectormediated gene transfer. This rescued context-dependent fear memory, but not the freezing deficit during training or the unconditioned fear response to predator odor. These data pinpoint the basolateral amygdala as the site where ASIC1a contributes to fear memory. They also discriminate fear memory from fear expressed during training and from unconditioned fear. Furthermore, this work illustrates a strategy for identifying discrete brain regions where specific genes contribute to complex behaviors.
No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments. Here, we used several of these models to test the hypothesis that the acid-sensing ion channel-1a (ASIC1a) might be targeted to reduce depression. Genetically disrupting ASIC1a in mice produced antidepressant-like effects in the forced swim test, the tail suspension test, and following unpredictable mild stress. Pharmacologically inhibiting ASIC1a also had antidepressant-like effects in the forced swim test. The effects of ASIC1a disruption in the forced swim test were independent of and additive to those of several commonly used antidepressants. Furthermore, ASIC1a disruption interfered with an important biochemical marker of depression, the ability of stress to reduce BDNF in the hippocampus. Restoring ASIC1a to the amygdala of ASIC1a Ϫ/Ϫ mice with a viral vector reversed the forced swim test effects, suggesting that the amygdala is a key site of ASIC1a action in depression-related behavior. These data are consistent with clinical studies emphasizing the importance of the amygdala in mood regulation, and suggest that ASIC1a antagonists may effectively combat depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.