Background— The delivery of autologous cells to increase angiogenesis is emerging as a treatment option for patients with cardiovascular disease but may be limited by the accessibility of sufficient cell numbers. The beneficial effects of delivered cells appear to be related to their pluripotency and ability to secrete growth factors. We examined nonadipocyte stromal cells from human subcutaneous fat as a novel source of therapeutic cells. Methods and Results— Adipose stromal cells (ASCs) were isolated from human subcutaneous adipose tissue and characterized by flow cytometry. ASCs secreted 1203±254 pg of vascular endothelial growth factor (VEGF) per 10 6 cells, 12 280±2944 pg of hepatocyte growth factor per 10 6 cells, and 1247±346 pg of transforming growth factor-β per 10 6 cells. When ASCs were cultured in hypoxic conditions, VEGF secretion increased 5-fold to 5980±1066 pg/10 6 cells ( P =0.0016). The secretion of VEGF could also be augmented 200-fold by transfection of ASCs with a plasmid encoding VEGF ( P <0.05). Conditioned media obtained from hypoxic ASCs significantly increased endothelial cell growth ( P <0.001) and reduced endothelial cell apoptosis ( P <0.05). Nude mice with ischemic hindlimbs demonstrated marked perfusion improvement when treated with human ASCs ( P <0.05). Conclusions— Our experiments delineate the angiogenic and antiapoptotic potential of easily accessible subcutaneous adipose stromal cells by demonstrating the secretion of multiple potentially synergistic proangiogenic growth factors. These findings suggest that autologous delivery of either native or transduced subcutaneous ASCs, which are regulated by hypoxia, may be a novel therapeutic option to enhance angiogenesis or achieve cardiovascular protection.
The role of resistin in obesity and insulin resistance in humans is controversial. Therefore, resistin protein was quantitated by ELISA in serum of 27 lean [13 women/14 men, body mass index (BMI) 21.7 +/- 0.4 kg/m(2), age 33 +/- 2 yr] and 50 obese (37 women/13 men, BMI 49.8 +/- 1.5 kg/m(2), age 47 +/- 1 yr) subjects. There was more serum resistin protein in the obese (mean +/- SEM: 5.3 +/- 0.4 ng/ml; range 1.8-17.9) than lean subjects (3.6 +/- 0.4 ng/ml; range 1.5-9.9; P = 0.001). The elevation of serum resistin in obese humans was confirmed by Western blot as was expression of resistin protein in human adipose tissue and isolated adipocytes. There was a significant positive correlation between resistin and BMI (r = 0.37; P = 0.002). Multiple regression analysis with predictors BMI and resistin explained 25% of the variance in homeostasis model assessment of insulin resistance score. BMI was a significant predictor of insulin resistance (P = 0.0002), but resistin adjusted for BMI was not (P = 0.11). The data demonstrate that resistin protein is present in human adipose tissue and blood, and that there is significantly more resistin in the serum of obese subjects. Serum resistin is not a significant predictor of insulin resistance in humans.
Objective: Adiponectin mRNA expression in isolated subcutaneous and omental adipocytes was examined across a wide range of adiposity to determine whether adiponectin synthesis is impaired in these adipose tissue depots in obese humans. Tumor necrosis factor (TNF)␣ and dexamethasone were tested for inhibitory effects on adiponectin release from human adipocytes in vitro. Research Methods and Procedures: Adipocytes were isolated by collagenase digestion of abdominal adipose tissue obtained from subjects undergoing surgical procedures or outpatient needle biopsy. Adiponectin and leptin mRNA were quantitated by real-time reverse transcriptase-polymerase chain reaction. Adiponectin and leptin secretion from isolated adipocytes treated with dexamethasone or TNF␣ were determined by radioimmunoassay. Results: There was a significant negative correlation between adiponectin gene expression and BMI in subcutaneous adipocytes from 32 women (r ϭ 0.420; p ϭ 0.02). Adiponectin mRNA was also significantly correlated with serum adiponectin (r ϭ 0.44; p ϭ 0.03; n ϭ 25). There was no correlation between adiponectin mRNA expression and BMI in omental adipocytes from 29 women. Leptin mRNA was significantly and positively correlated (r ϭ 0.484; p ϭ 0.01) with BMI in the same omental adipocyte mRNA preparations. In subcutaneous adipocytes from lean subjects, TNF␣ inhibited adiponectin release by 7.4 Ϯ 1.2% (n ϭ 9, p Ͻ 0.05) but had no effect on adiponectin release from subcutaneous or omental adipocytes from obese subjects. Dexamethasone significantly inhibited adiponectin release with 24 hours of treatment. Discussion: The data suggest that reduced adiponectin synthesis in subcutaneous adipocytes contributes to lower serum adiponectin levels in obesity and that glucocorticoids regulate adiponectin gene expression in human adipocytes. TNF␣ does not seem to directly inhibit adiponectin synthesis in human adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.