Contents Summary306I.The need to use phosphorus efficiently307II.P‐use efficiency and P dynamics in a growing crop307III.P pools in plants307IV.Phosphorus pools and growth rates310V.Are crops different from other plants in their P concentration?310VI.Phosphorus use and photosynthesis311VII.Crop development and canopy P distribution312VIII.Internal redistribution of P in a growing vegetative plant313IX.Allocation of P to reproductive structures314X.Constraints to P remobilisation315XI.Do physiological or phylogenetic trade‐offs constrain traits that could improve PUE?316XII.Identifying genetic loci associated with PUE316XIII.Conclusions317Acknowledgements317References317 Summary Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P‐acquisition efficiency) and by improved productivity per unit P taken up (P‐use efficiency). This review focuses on improved P‐use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P‐use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.
[1] We examine the interplay between ecology and biogeochemical cycles in the context of a global three-dimensional ocean model where self-assembling phytoplankton communities emerge from a wide set of potentially viable cell types. We consider the complex model solutions in the light of resource competition theory. The emergent community structures and ecological regimes vary across different physical environments in the model ocean: Strongly seasonal, high-nutrient regions are dominated by fast growing bloom specialists, while stable, low-seasonality regions are dominated by organisms that can grow at low nutrient concentrations and are suited to oligotrophic conditions. In the latter regions, the framework of resource competition theory provides a useful qualitative and quantitative diagnostic tool with which to interpret the outcome of competition between model organisms, their regulation of the resource environment, and the sensitivity of the system to changes in key physiological characteristics of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.