Purpose: To eliminate CD44, a putative cancer stem cell (CSC) marker, overexpressing head and neck squamous cell carcinoma (HNSCC) cells by using hyaluronan-conjugated, dextran-coated super paramagnetic iron oxide nanoparticles (HA-DESPIONs), in conjunction with induced heat produced by exposure to an alternating magnetic field (AMF). Methods: An AMF generator was constructed by means of a solenoid coil and an impedance circuit driven by a power amplifier. A signal generator produced a small sinusoidal signal of 130 kHz that was then amplified to 9 A (peak to peak value) to generate an AMF of approximately 10 kA/m (12.6 mT) at the center of a coil. The heat generating effect of the AMF generator was tested via several kinetic and dose-dependent bulk heating experiments by exposing readily available magnetic nanoparticles to AMF. For elimination of CD44 population, UT-SCC-14 cells were exposed to either targeted HA-DESPIONs or non-targeted DESPIONs at a concentration 200 μg/ml and exposed to AMF for 30 minutes. Cells were processed after 24 hours for flow cytometry based analysis of apoptosis. Results: Magnetic nanoparticles caused a concentration-dependent bulk heating effect in response to AMF resulting in a significant temperature rise. Following the exposure to AMF, non-conjugated DESPIONs were unable to induce targeted hyperthermia and hence had no effect on CD44 cell death in HNSCC cells. However, there was a significant cell death in the CD44 population treated with HA-DESPIONs and exposed to AMF. This effect was only obeserved when the magnetic field was turned on. Conclusion: Bulk heating experiments concluded that a simple AMF generator was able to activate magnetic nanoparticles and flow cytometry demonstrated that HA-DESPIONs were able to cause apoptosis in UT-SCC-14 cells that express CD44.This may be a promising strategy to specifically target cancer stem cells (CSCs) for the treatment of HNSCC.
Rapid advances in the field of sensing and sensor networks is opening the door to many new possibilities. This paper presents work related to interfacing a robot being controlled remotely via the Internet with a sensor network. The sensor network measurements are fed back to the operator and rendered in the form of a haptic force. This provides the operator with information regarding the environment and thus more efficient and safe operation. The challenge is to efficiently fuse the measurements from the different nodes and convey the result to the operator in an intuitive form. A centralized approach and a distributed approach for the fusion of sensed measurements are presented. In addition, experimental results are provided to highlight the concepts developed.
In this article, we present a novel type of medium-grained reconfigurable architecture that we term the Field Programmable Operation Array (FPOA). This device has been designed specifically for the implementation of HLS-generated circuitry. At the core of the FPOA is the OP-block. Unlike a standard LUT, an OP-block performs multi-bit operations through gate-based logic structures, translating into greater speed and efficiency in digital circuit implementation. <?tight?>Our device is not optimized for a specific application domain. Rather, we have created a device that is optimized for a specific circuit structure, namely those generated by HLS. This gives the FPOA a significant advantage as it can be used across all application domains. In this work, we add support for both distributed and block memory to the FPOA architecture. Experimental results show up to a 13.5× reduction in logic area and a 9.5× reduction in critical path delay for circuit implementation using the FPOA compared to a standard FPGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.