The biologically active form of the essential trace element chromium is believed to be the oligopeptide chromodulin. Chromodulin binds four chromic ions before binding at or near the active site of activating insulin receptor and subsequently potentiating the tyrosine kinase activity of the receptor. Charge balance arguments and preliminary spectroscopic studies suggested that the chromic centers might be part of a multinuclear assembly. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopies and variable-temperature magnetic susceptibility measurements, we found that holochromodulin is shown to possess an antiferromagnetically coupled trinuclear assembly which probably weakly interacts with a fourth chromium center. The chromium centers possess octahedron coordination comprised of oxygen-based ligation, presumably derived primarily from oligopeptide-supplied carboxylate groups. X-ray absorption data cannot be reproduced with the presence of sulfur atom(s), indicating that the cysteine thiolate group does not coordinate to the chromium centers. Thus, chromodulin possesses a unique type of multinuclear assembly, distinct from those known in other bioinorganic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.