Ceph is an emerging open-source parallel distributed file and storage system. By design, Ceph leverages unreliable commodity storage and network hardware, and provides reliability and fault-tolerance via controlled object placement and data replication. This paper presents our file and block I/O performance and scalability evaluation of Ceph for scientific high-performance computing (HPC) environments. Our work makes two unique contributions. First, our evaluation is performed under a realistic setup for a large-scale capability HPC environment using a commercial high-end storage system. Second, our path of investigation, tuning efforts, and findings made direct contributions to Ceph's development and improved code quality, scalability, and performance. These changes should benefit both Ceph and the HPC community at large.
The Oak Ridge Leadership Computing Facility (OLCF) is a leader in large-scale parallel file system development, design, deployment and continuous operation. For the last decade, the OLCF has designed and deployed two large center-wide parallel file systems. The first instantiation, Spider 1, served the Jaguar supercomputer and its predecessor, Spider 2, now serves the Titan supercomputer, among many other OLCF computational resources. The OLCF has been rigorously collecting file and storage system statistics from these Spider systems since their transition to production state. In this paper we present the collected I/O workload statistics from the Spider 2 system and compare it to the Spider 1 data. Our analysis show that the Spider 2 workload is more more write-heavy I/O compared to Spider 1 (75% vs. 60%, respectively). The data also show the OLCF storage policies such as periodic purges are effectively managing the capacity resource of Spider 2. Furthermore, due to improvements in tdm multipath and ib srp software, we are utilizing the Spider 2 system bandwidth and latency resources more effectively. The Spider 2 bandwidth usage statistics shows that our system is working within the design specifications. However, it is also evident that our scientific applications can be more effectively served by a burst buffer storage layer. All the data has been collected by monitoring tools developed for the Spider ecosystem. We believe the observed data set and insights will help us better design the next-generation Spider file and storage system. It will also be helpful to the larger community for building more effective large-scale file and storage systems.
The importance of computing facilities is heralded every six months with the announcement of the new Top500 list, showcasing the world's fastest supercomputers. Unfortunately, with great computing capability does not come great long-term data storage capacity, which often means users must move their data to their local site archive, to remote sites where they may be doing future computation or analysis, or back to their home institution, else face the dreaded data purge that most HPC centers employ to keep utilization of large parallel filesystems low to manage performance and capacity. At HPC centers, data transfer is crucial to the scientific workflow and will increase in importance as computing systems grow in size. The Energy Sciences Network (ESnet) recently launched its fifth generation network, a 100 Gbps high-performance, unclassified national network connecting more than 40 DOE research sites to support scientific research and collaboration. Despite the tenfold increase in bandwidth to DOE research sites amenable to multiple data transfer streams and high throughput, in practice, researchers often under-utilize the network and resort to painfully-slow single stream transfer methods such as scp to avoid the complexity of using multiple stream tools such as GridFTP and bbcp, and contend with frustration from the lack of consistency of available tools between sites. In this study we survey and assess the data transfer methods provided at several DOE supported computing facilities, including both leadership-computing facilities, connected through ESnet. We present observed transfer rates, suggested optimizations, and discuss the obstacles the tools must overcome to receive wide-spread adoption over scp.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.