Clostridium difficile TcdA is a large toxin that binds carbohydrates on intestinal epithelial cells. A 2-A resolution cocrystal structure reveals two molecules of alpha-Gal-(1,3)-beta-Gal-(1,4)-beta-GlcNAcO(CH(2))(8)CO(2)CH(3) binding in an extended conformation to TcdA. Residues forming key contacts with the trisaccharides are conserved in all seven putative binding sites in TcdA, suggesting a mode of multivalent binding that may be exploited for the rational design of novel therapeutics.
Clostridium difficile is a major nosocomial pathogen that produces two large protein toxins [toxin A (TcdA) and toxin B (TcdB)] capable of disrupting intestinal epithelial cells. Both belong to the family of large clostridial cytotoxins, which are characterized by the presence of a repetitive C-terminal repetitive domain (CRD). In TcdA, the CRD is composed of 39 repeats that are responsible for binding to cell surface carbohydrates. To understand the molecular structural basis of cell binding by the toxins from C. difficile, we have determined a 1.85-Å resolution crystal structure of a 127-aa fragment from the C terminus of the toxin A CRD. This structure reveals a -solenoid fold containing five repeats, with each repeat consisting of a -hairpin followed by a loop of 7-10 residues in short repeats (SRs) or 18 residues in long repeats (LRs). Adjacent pairs of -hairpins are related to each other by either 90°or 120°screw-axis rotational relationships, depending on the nature of the amino acids at key positions in adjacent -hairpins. Models of the complete CRDs of toxins A and B suggest that each CRD contains straight stretches of -solenoid composed of three to five SRs that are punctuated by kinks introduced by the presence of a single LR. These structural features provide a framework for understanding how large clostridial cytotoxins bind to cell surfaces and suggest approaches for developing novel treatments for C. difficile-associated diseases by blocking the binding of toxins to cell surfaces.
Protein aggregation is commonly observed during protein refolding. To better understand this phenomenon, the intermolecular interactions experienced by a protein during unfolding and refolding are inferred from second virial coefficient (SVC) measurements. It is accepted that a negative SVC is indicative of proteinprotein interactions that are attractive, whereas a positive SVC indicates net repulsive interactions. Lysozyme denatured and reduced in guanidinium hydrochloride exhibited a decreasing SVC as the denaturant was diluted, and the SVC approached zero at approximately 3 M GdnHCl. Further dilution of denaturant to renaturation conditions (1.25 M GdnHCl) led to a negative SVC, and significant protein aggregation was observed. The inclusion of 500 mM L-arginine in the renaturation buffer shifted the SVC to positive and suppressed aggregation, thereby increasing refolding yield. The formation of mixed disulfides in the denatured state prior to refolding also increased protein solubility and suppressed aggregation, even without the use of L-arginine. Again, the suppression of aggregation was shown to be caused by a shift from attractive to repulsive intermolecular interactions as reflected in a shift from a negative to a positive SVC value. To the best of our knowledge, this is the first time that SVC data have been reported for renaturation studies. We believe this technique will aid in our understanding of how certain conditions promote renaturation and increase protein solubility, thereby suppressing aggregation. SVC measurements provide a useful link, for protein folding and aggregation, between empirical observation and thermodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.