The electron signals from the field ionization of two closely-spaced Rydberg states of rubidium-85 are separated using quantum control. In selective field ionization, the state distribution of a collection of Rydberg atoms is measured by ionizing the atoms with a ramped electric field. Generally, atoms in higher energy states ionize at lower fields, so ionized electrons which are detected earlier in time can be correlated with higher energy Rydberg states. However, the resolution of this technique is limited by the Stark effect. As the electric field is increased, the electron encounters numerous avoided Stark level crossings which split the amplitude among many states, thus broadening the time-resolved ionization signal. Previously, a genetic algorithm has been used to control the signal shape of a single Rydberg state. The present work extends this technique to separate the signals from the 34s and 33p states of rubidium-85, which are overlapped when using a simple field ramp as in selective field ionization.
Selective field ionization is used to determine the state or distribution of states to which a Rydberg atom is excited. By evolving a small perturbation to the ramped electric field using a genetic algorithm, the shape of the time-resolved ionization signal can be controlled. This allows for separation of signals from pairs of states that would be indistinguishable with unperturbed selective field ionization. Measurements and calculations are presented that demonstrate this technique and shed light on how the perturbation directs the pathway of the electron to ionization. Pseudocode for the genetic algorithm is provided. Using the improved resolution afforded by this technique, quantitative measurements of the 36p 3/2 + 36p 3/2 → 36s 1/2 + 37s 1/2 dipole-dipole interaction are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.