The incorporation of nitrogen atoms into the aryl rings of conventional diphenylamine antioxidants enables the preparation of readily accessible, air-stable analogues, several of which have temperature-independent radical-trapping activities up to 200-fold greater than those of typical commercial diphenylamines. Amazingly, the nitrogen atoms raise the oxidation potentials of the amines without greatly changing their radical-trapping (H-atom transfer) reactivity.
We recently reported a preliminary account of our efforts to develop novel diarylamine radical-trapping antioxidants (Hanthorn et al. J. Am. Chem. Soc.2012, 134, 8306-8309), wherein we demonstrated that the incorporation of ring nitrogens into diphenylamines affords compounds that display a compromise between H-atom transfer reactivity to peroxyl radicals and stability to one-electron oxidation. Herein, we report the results of thermochemical and kinetic experiments on an expanded set of diarylamines (see the accompanying paper, DOI: 10.1021/jo301013c ), which provide a more complete picture of the structure-reactivity relationships of these compounds as antioxidants. Nitrogen incoporation into a series of alkyl-, alkoxyl-, and dialkylamino-substituted diphenylamines raises their oxidation potentials systematically with the number of nitrogen atoms, resulting in overall increases of 0.3-0.5 V on going from the diphenylamines to the dipyrimidylamines. At the same time, the effect of nitrogen incorporation on their reactivity toward peroxyl radicals was comparatively small (a decrease of only 6-fold at most), which is also reflected in their N-H bond dissociation enthalpies. Rate constants for reactions of dialkylamino-substituted diarylamines with peroxyl radicals were found to be >10(7) M(-1) s(-1), which correspond to the pre-exponential factors that we obtained for a representative trio of compounds (log A ∼ 7), indicating that the activation energies (E(a)) are negligible for these reactions. Comparison of our thermokinetic data for reactions of the diarylamines with peroxyl radicals with literature data for reactions of phenols with peroxyl radicals clearly reveals that diarylamines have higher inherent reactivities, which can be explained by a proton-coupled electron-transfer mechanism for these reactions, which is supported by theoretical calculations. A similar comparison of the reactivities of diarylamines and phenols with alkyl radicals, which must take place by a H-atom transfer mechanism, clearly reveals the importance of the polar effect in the reactions of the more acidic phenols, which makes phenols comparatively more reactive.
Weak organic acids in millimolar concentrations increase the reactivity of peroxyl radicals with common phenolic antioxidants dramatically. This counterintuitive phenomenon relies on a substantially different reaction mechanism from that in the absence of an acid: rate‐determining electron transfer occurs from the hydrogen‐bonded phenol to the hydroperoxide cation radical present in equilibrium with the peroxyl radical under these conditions (see scheme).
We report a simple coumarin-triarylphosphine conjugate that undergoes fluorescence enhancement upon reaction with hydroperoxides and demonstrate its use to follow autoxidations of 7-dehydrocholesterol (at 37 °C) and hexadecane (at 160 °C) and their inhibition by antioxidants.
SummaryThe incorporation of nitrogen atoms into the aromatic ring of phenolic compounds has enabled the development of some of the most potent radical-trapping antioxidants ever reported. These compounds, 3-pyridinols and 5-pyrimidinols, have stronger O–H bonds than equivalently substituted phenols, but possess similar reactivities toward autoxidation chain-carrying peroxyl radicals. These attributes suggest that 3-pyridinols and 5-pyrimidinols will be particularly effectiveco-antioxidants when used in combination with more common, but less reactive, phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol (BHT), which we demonstrate herein. The antioxidants function in a synergistic manner to inhibit autoxidation; taking advantage of the higher reactivity of the 3-pyridinols/5-pyrimidinols to trap peroxyl radicals and using the less reactive phenols to regenerate them from their corresponding aryloxyl radicals. The present investigations were carried out in chlorobenzene and acetonitrile in order to provide some insight into the medium dependence of the synergism and the results, considered with some from our earlier work, prompt a revision of the H-bonding basicity value of acetonitrile to β2 H of 0.39. Overall, the thermodynamic and kinetic data presented here enable the design of co-antioxidant systems comprising lower loadings of the more expensive 3-pyridinol/5-pyrimidinol antioxidants and higher loadings of the less expensive phenolic antioxidants, but which are equally efficacious as the 3-pyridinol/5-pyrimidinol antioxidants alone at higher loadings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.