Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grow semiconductor indium antimonide nanowires that are coated with shells of tin of uniform thickness. No interdiffusion is observed at the interface between Sn and InSb. Tunnel junctions are prepared by in-situ shadowing. Despite the lack of lattice matching between Sn and InSb a 15 nm thick shell of tin is found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4T. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.
Abstract. Computer manipulated social networks are usually built from the explicit assertion by users that they have some relation with other users or by the implicit evidence of such relations (e.g., co-authoring). However, since the goal of social network analysis is to help users to take advantage of these networks, it would be convenient to take more information into account. We introduce a threelayered model which involves the network between people (social network), the network between the ontologies they use (ontology network) and a network between concepts occurring in these ontologies. We explain how relationships in one network can be extracted from relationships in another one based on analysis techniques relying on this network specificity. For instance, similarity in the ontology network can be extracted from a similarity measure on the concept network. We illustrate the use of these tools for the emergence of consensus ontologies in the context of semantic peer-to-peer systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.