Stressful life events have been implicated clinically in the pathogenesis of mental illness, but the neural substrates that may account for this observation remain poorly understood. Attentional impairments symptomatic of these psychiatric conditions are associated with structural and functional abnormalities in a network of prefrontal cortical structures. Here, we examine whether chronic stress-induced dendritic alterations in the medial prefrontal cortex (mPFC) and orbital frontal cortex (OFC) underlie impairments in the behaviors that they subserve. After 21 d of repeated restraint stress, rats were tested on a perceptual attentional set-shifting task, which yields dissociable measures of reversal learning and attentional set-shifting, functions that are mediated by the OFC and mPFC, respectively. Intracellular iontophoretic injections of Lucifer yellow were performed in a subset of these rats to examine dendritic morphology in layer II/III pyramidal cells of the mPFC and lateral OFC. Chronic stress induced a selective impairment in attentional set-shifting and a corresponding retraction (20%) of apical dendritic arbors in the mPFC. In stressed rats, but not in controls, decreased dendritic arborization in the mPFC predicted impaired attentional set-shifting performance. In contrast, stress was not found to adversely affect reversal learning or dendritic morphology in the lateral OFC. Instead, apical dendritic arborization in the OFC was increased by 43%. This study provides the first direct evidence that dendritic remodeling in the prefrontal cortex may underlie the functional deficits in attentional control that are symptomatic of stress-related mental illnesses.
The prefrontal cortex (PFC) plays an important role in higher cognitive processes, and in the regulation of stress-induced hypothalamic-pituitary-adrenal (HPA) activity. Here we examined the effect of repeated restraint stress on dendritic spine number in the medial PFC. Rats were perfused after receiving 21 days of daily restraint stress, and intracellular iontophoretic injections of Lucifer Yellow were carried out in layer II/III pyramidal neurons in the anterior cingulate and prelimbic cortices. We found that stress results in a significant (16%) decrease in apical dendritic spine density in medial PFC pyramidal neurons, and confirmed a previous observation that total apical dendritic length is reduced by 20% in the same neurons. We estimate that nearly one-third of all axospinous synapses on apical dendrites of pyramidal neurons in medial PFC are lost following repeated stress. A decrease in medial PFC dendritic spines may not only be indicative of a decrease in the total population of axospinous synapses, but may impair these neurons' capacity for biochemical compartmentalization and plasticity in which dendritic spines play a major role. Dendritic atrophy and spine loss may be important cellular features of stress-related psychiatric disorders where the PFC is functionally impaired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.