Mucosal‐associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti‐microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)‐13 expression. We used RNA‐seq and qRT‐PCR to demonstrate high expression of the IL‐13 gene in chronically stimulated MAIT cells, and directly identify IL‐13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL‐13‐dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL‐13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL‐13 can be a critical factor.
Plasma amyloid beta protein (Abeta42) levels and late onset Alzheimer's disease (LOAD) have been linked to the same region on chromosome 10q. The PLAU gene within this region encodes urokinase-type plasminogen activator, which converts plasminogen to plasmin. Abeta aggregates induce PLAU expression thereby increasing plasmin, which degrades both aggregated and non-aggregated forms of Abeta. We evaluated single nucleotide polymorphisms (SNPs) in PLAU for association with Abeta42 and LOAD. PLAU SNP compound genotypes composed of haplotype pairs showed significant association with AD in three independent case-control series. PLAU SNP haplotypes associated significantly with plasma Abeta42 in 10 extended LOAD families. One of the SNPs analyzed was a missense C/T polymorphism in exon 6 of PLAU (PLAU_1=rs2227564), which causes a proline to leucine change (P141L). We analyzed PLAU_1 for association with AD in six case-control series and 24 extended LOAD families. The CT and TT PLAU_1 genotypes showed association (P=0.05) with an overall estimated odds ratio of 1.2 (1.0-1.5). The CT and TT genotypes of PLAU_1 were also associated with significant age-dependent elevation of plasma Abeta42 in 24 extended LOAD families (P=0.0006). In knockout mice lacking the PLAU gene, plasma--but not brain--Abeta42 as well as Abeta40 was significantly elevated, also in an age-dependent manner. The PLAU_1 associations were independent of the associations we found among plasma Abeta42, LOAD and variants in the IDE or VR22 region. These results provide strong evidence that PLAU or a nearby gene is involved in the development of LOAD. PLAU_1 is a plausible pathogenic mutation that could act by increasing Abeta42, but additional biological experiments are required to show this definitively.
BackgroundCardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin‐2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants.Methods and ResultsWe used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2‐knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2‐knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS,LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single‐nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis‐eQTL for LCN2 expression.ConclusionsDirect effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay is one of the most commonly used tests of cell proliferation. Hydralazine has been reported to interfere with the performance of the MTS assay when used on adherent cells. This study aimed to investigate whether hydralazine interferes with the performance of the MTS assay on suspended cells. THP-1 (a monocytic leukemia cell line) cells were cultured in the presence or absence of hydralazine (0, 10, 50, 100, and 500 lM) for 2 or 24 h. Cell numbers were analyzed using the MTS, trypan blue exclusion, or microscopic assays. A modified version of the standard MTS assay was established by centrifuging the cells and replacing the test medium with fresh culture medium immediately before the addition of the MTS reagent. Culture of THP-1 cells with hydralazine at concentrations of 50, 100, and 500 lM for 2 h increased absorbance (p < 0.001) in the standard MTS assay, whereas both the trypan blue exclusion assay and microscopy suggested no change in cell numbers. Culture of THP-1 cells with 100 and 500 lm hydralazine for 24 h increased absorbance (p < 0.05) in the standard MTS assay; however, trypan blue exclusion and microscopy suggested a decrease in cell numbers. In a cell-free system, hydralazine (100 and 500 lM) increased absorbance in a time-and concentrationdependent manner. The modified MTS assay produced results consistent with trypan blue exclusion and microscopy using THP-1 cells. In addition, the modified MTS assay produced reliable results when K562 and Jurkat cells were incubated with hydralazine or b-mercaptoethanol (bME). In conclusion, a simple modification of the standard MTS assay overcame the interference of hydralazine and bME when assessing suspended cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.