Expression of androgen receptor (AR) in prostate cancer (PCa) is heterogeneous but the functional significance of AR heterogeneity remains unclear. Screening ~200 castration-resistant PCa (CRPC) cores and whole-mount sections (from 89 patients) reveals 3 AR expression patterns: nuclear (nuc-AR), mixed nuclear/cytoplasmic (nuc/cyto-AR), and low/no expression (AR−/lo). Xenograft modeling demonstrates that AR+ CRPC is enzalutamide-sensitive but AR−/lo CRPC is resistant. Genome editing-derived AR+ and AR-knockout LNCaP cell clones exhibit distinct biological and tumorigenic properties and contrasting responses to enzalutamide. RNA-Seq and biochemical analyses, coupled with experimental combinatorial therapy, identify BCL-2 as a critical therapeutic target and provide proof-of-concept therapeutic regimens for both AR+/hi and AR−/lo CRPC. Our study links AR expression heterogeneity to distinct castration/enzalutamide responses and has important implications in understanding the cellular basis of prostate tumor responses to AR-targeting therapies and in facilitating development of novel therapeutics to target AR−/lo PCa cells/clones.
The role of dysregulation of mRNA alternative splicing (AS) in the development and progression of solid tumors remains to be defined. Here we describe the first comprehensive AS landscape in the spectrum of human prostate cancer (PCa) evolution. We find that the severity of splicing dysregulation correlates with disease progression and establish intron retention as a hallmark of PCa stemness and aggressiveness. Systematic interrogation of 274 splicing-regulatory genes (SRGs) uncovers prevalent genomic copy number variations (CNVs), leading to mis-expression of~68% of SRGs during PCa development and progression. Consequently, many SRGs are prognostic. Surprisingly, androgen receptor controls a splicing program distinct from its transcriptional regulation. The spliceosome modulator, E7107, reverses cancer aggressiveness and inhibits castration-resistant PCa (CRPC) in xenograft and autochthonous PCa models. Altogether, our studies establish aberrant AS landscape caused by dysregulated SRGs as a hallmark of PCa aggressiveness and the spliceosome as a therapeutic vulnerability for CRPC.
Prostate cancer (PCa) has predominantly a luminal phenotype. Basal cells were previously identified as a cell-of-origin for PCa, but increasing evidence implicates luminal cells as a preferred cell-of-origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared to basal cells. This review describes the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. The potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa is also discussed. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Purpose: The high prevalence of osteoblastic bone metastases in prostate cancer involves the production of osteoblast-stimulating factors by prostate cancer cells. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serologic marker for prostate cancer. In this study, we examined the role of PSA in the induction of osteoblast differentiation. Experimental Design: Human cDNA containing a coding region for PSA was transfected into human osteosarcoma SaOS-2 cells. SaOS-2 cells were also treated with exogenously added PSA. We evaluated changes in global gene expression using cDNA arrays and Northern blot analysis resulting from expression of PSA in human osteosarcoma SaOS-2 cells. Results: SaOS-2 cells expressing PSA had markedly up-regulated expression of genes associated with osteoblast differentiation including runx-2 and osteocalcin compared with the controls. Consistent with these results, the stable clones expressing PSA showed increased mineralization and increased activity of alkaline phosphatase in vitro compared with controls, suggesting that these cells undergo osteoblast differentiation.We also found that osteoprotegerin expression was down-regulated and that the receptor activator of NF-nB ligand expression was up-regulated in cells expressing PSA compared with controls. Conclusions: Modulation of the expression of osteogenic genes and alteration of the balance between osteoprotegerin^receptor activator of NF-nB ligand by PSA suggests that PSA produced by metastatic prostate cancer cells may participate in bone remodeling in favor of the development of osteoblastic metastases in the heterogeneous mixture of osteolytic and osteoblastic lesions. These findings provide a molecular basis for understanding the high prevalence of osteoblastic bone metastases in prostate cancer.Bone is the frequent site of many types of cancer metastasis including prostate cancer. Advanced prostate cancer is frequently accompanied by the development of unique bone metastases characterized as osteoblastic (bone forming), which results in significant complications including bone pain, fractures, and spinal cord compression, even hemiparesis, leading to morbidity with no curable treatment (1 -3). Although osteoblastic lesions are the most dominant bone metastases associated with prostate cancer, osteoclastic lesions (bone resorption) also infrequently occur in prostate bone metastases (4, 5). In contrast, cancers from other tissues that metastasize to bone are frequently associated with osteoclast formation. Osteoblastic characterization associated with prostate bone metastases suggests that factors derived from prostate cancer cells which influence bone remodeling may be unique from other types of cancer cells.Several osteogenic factors produced by prostate cancer cells have been identified including bone morphogenetic proteins (BMP; refs. 6, 7), endothelin-1 (8), insulin-like growth factors (IGF; ref. 9), parathyroid hormone -related peptide (10), transfor...
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR− xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.