Puvpos~: We have isolated pluripotent mesenchymal progenitor cells in large numbers from liposuction aspirates (processed lipoaspirate cells or PLAs). This study examines the osteogenic potential of PLAs and bone marrow aspirate cells (BMAs), when exposed to either recombinant human bone morphogenetic protein (BMPI-2 (rh-BMP-2) or adenovirus containing BMP-2 cDNA Mrthoulc: Liposuction aspirates underwent proteolytic digestion to obtain PLAs. After exposure to exogenous rh-BMP-2 or Ad-BMP-2 for four or seven days, PLAs and BMAs were assessed by histochemistry, spectrophotometry and RT-PCR. Western blotting and ELISA confirmed BMP gene transduction. Results were compared to osteoblasts and cells in osteogenic media only. PLA-Ad-BMP-2 cells were seeded on matrices and implanted in the hind limbs of SCID mice.Results: Analysis of quantified bone precursor assays including extracellular ALP histomorphometry, intracellular ALP spectrophotometry, and calcified extracellular matrix (von Kossa) histomorphometry revealed that PLAs treated with exogenous rh-BMP-2 or transduced with a BMP-2 containing adenovirus (PLA-Ad-BMP-2) produced more bone precursors than osteoblasts ( p = 0.001). PLAs treated with exogenous rh-BMP-2 or PLA-Ad-BMP-2 also produced more bone precursors than BMAs ( p = 0.001), except for day 7 ALP histomorphometry (p = 0.343). ELISA confirmed successful BMP-2 production by both progenitor cell groups transduced with Ad-BMP-2. H&E sections from collagen I matrices seeded with PLA-Ad-BMP-2 cells confirmed bone formation at six weeks.Conclusion.r: Liposuction aspirates contain PLAs that can be transfected with the BMP-2 gene, with rapid induction into the osteoblast phenotype at a rate comparable to rh-BMP-2 and osteoblast groups. Transduced PLAs produce more bone precursors with faster onset of calcified extracellular matrix than transduced BMAs. PLAs may be an ideal source of mesenchyme-lineage stem cells for gene therapy and tissue engineering.
Females with higher serum relaxin levels may be at increased risk for anterior cruciate ligament tears. Further investigation of the clinical utility of SRC testing is warranted.
Background
The number of Mesenchymal Stem/Stromal Cells (MSCs) in the human bone marrow (BM) is small compared to other cell types. BM aspirate concentration (BMAC) may be used to increase numbers of MSCs, but the composition of MSC subpopulations and growth factors after processing are unknown. The purpose of this study was to assess the enrichment of stem/progenitor cells and growth factors in BM aspirate by two different commercial concentration devices versus standard BM aspiration.
Methods
120 mL of BM was aspirated from the iliac crest of 10 male donors. Each sample was processed simultaneously by either Emcyte GenesisCS
®
(Emcyte) or Harvest SmartPReP2 BMAC (Harvest) devices and compared to untreated BM aspirate. Samples were analyzed with multicolor flow cytometry for cellular viability and expression of stem/progenitor cells markers. Stem/progenitor cell content was verified by quantification of colony forming unit-fibroblasts (CFU-F). Platelet, red blood cell and total nucleated cell (TNC) content were determined using an automated hematology analyzer. Growth factors contents were analyzed with protein quantification assays. Statistical analyses were performed by ANOVA analysis of variance followed by Tukey’s multiple comparison test or Wilcoxon matched-pairs signed rank test with p < 0.05 for significance.
Results
Cell viability after processing was approximately 90% in all groups. Compared to control, both devices significantly enriched TNCs and platelets, as well as the CD45−CD73+ and CD45−CD73+CD90+ cell populations. Further, Harvest significantly concentrated CD45−CD10+, CD45−CD29+, CD45−CD90+, CD45−CD105+, CD45−CD119+ cells, and CD45dimCD90+CD271+ MSCs, whereas Emcyte significantly enriched CD45dimCD44+CD271+ MSCs. BM concentration also increased the numbers of CFU-F, platelet-derived growth factor, vascular endothelial growth factor, macrophage colony-stimulating factor, interleukin-1b, VCAM-1 and total protein. Neither system concentrated red blood cells, hematopoietic stem cells or bone morphogenetic proteins.
Conclusion
This data could contribute to the development of BMAC quality control assays as both BMAC systems concentrated platelets, growth factors and non-hematopoietic stem cell subpopulations with distinct phenotypes without loss of cell viability when compared to unprocessed BM.
Electronic supplementary material
The online version of this article (10.1186/s12967-019-1866-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.