Analysis of a large, representative administrative database confirmed established predictors and revealed novel variables associated with comorbidity remission after bariatric surgery. Incorporating these factors into clinical tools to assess an individual patient's risk-to-benefit profile for these procedures could enhance patient selection and the overall use of surgery for the treatment of obesity and metabolic disease.
Achalasia is well documented in the pediatric age group. The treatment is primarily surgical, via the laparoscopic approach. This report describes two cases in which patients underwent successful robotic-assisted laparoscopic Heller's myotomy. The advantages of this novel approach are discussed, with a special emphasis on its applications to the pediatric population.
PurposeThoracic air leaks are a common complication following pulmonary resections. Limitations in clinical studies and preclinical models have hindered efforts to understand the pathophysiology of air leaks. With an emphasis on staple-line specific air leaks, we hypothesize that ventilation modality – intraoperative positive pressure vs postoperative negative pressure – and stapler design may play a role in air leaks.MethodsUsing a novel physiologic lung model, air leaks associated with graduated and uniform staple designs were evaluated under positive and negative pressure ventilation, simulating perioperative breathing in porcine lungs. Air leak incidence, air leak volume, and air leak rate were captured along with ventilation pressure and tidal volume.ResultsIn all cases, negative pressure ventilation was associated with a higher occurrence of leaks when compared to positive pressure ventilation. Lungs leaked more air and at a faster rate under negative pressure ventilation compared to positive pressure ventilation. Graduated staple designs were associated with higher occurrence of leaks as well as larger leak rates when compared to uniform staples. Tissue thickness was not associated with differences in air leaks when tested with appropriate staple heights.ConclusionUsing a novel lung model to investigate the pathophysiology of air leaks, we have identified breathing modality and staple design as two important variables that may impact air leaks. This work will help guide device design and drive future studies in human tissue, and it may help inform clinical practice to ultimately improve patient outcomes.
This work provides a foundation for future studies aimed at increasing the understanding of air leaks to better inform means of mitigating the risk of air leaks under clinically relevant conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.