Abstract-Selective troponin I (TnI) modification has been demonstrated to be in part responsible for the contractile dysfunction observed with myocardial ischemia/reperfusion injury. We have isolated and characterized modified TnI products in isolated rat hearts after 0, 15, or 60 minutes of ischemia followed by 45 minutes of reperfusion using affinity chromatography with cardiac troponin C (TnC) and an anti-TnI antibody, immunological mapping, reversed-phase high-performance liquid chromatography, and mass spectrometry. Rat cardiac TnI becomes progressively degraded from 210 amino acid residues to residues 1-193, 63-193, and 73-193 with increased severity of injury. Degradation is accompanied by formation of covalent complexes between TnI 1-193 and, respectively, TnC residues 1-94 and troponin T (TnT) residues 191-298. The covalent complexes are likely a result of isopeptide bond formation between lysine 193 of TnI and glutamine 191 of TnT by the cross-linking enzyme transglutaminase. With severe ischemia, cellular necrosis results in specific release of TnI 1-193 into the reperfusion effluent and TnT degradation in the myocardium (25-, 27-, and 33-kDa products). Two-dimensional electrophoresis demonstrated that phosphorylation of TnI prevents ischemiainduced degradation. This study characterized the modified TnI products in isolated rat hearts reperfused after a brief or severe period of ischemia, revealing the progressive nature of TnI degradation, changes in phosphorylation, and covalent complexes with ischemia/reperfusion injury. Finally, we propose a model for ischemia/reperfusion injury in which the extent of proteolytic and transglutaminase activities ultimately determines whether apoptosis or necrosis is achieved. (Circ Res. 1999;84:9-20.)
Stunned myocardium is a syndrome of reversible contractile failure that frequently complicates coronary artery disease. Cardiac excitation is uncoupled from contraction at the level of the myofilaments. Selective proteolysis of the thin filament protein troponin I has been correlated with stunned myocardium. Here, transgenic mice expressing the major degradation product of troponin I (TnI1-193) in the heart were found to develop ventricular dilatation, diminished contractility, and reduced myofilament calcium responsiveness, recapitulating the phenotype of stunned myocardium. Proteolysis of troponin I also occurs in ischemic human cardiac muscle. Thus, troponin I proteolysis underlies the pathogenesis of a common acquired form of heart failure.
Background-Selective proteolysis of cardiac troponin I (cTnI) is a proposed mechanism of contractile dysfunction in stunned myocardium, and the presence of cTnI degradation products in serum may reflect the functional state of the remaining viable myocardium. However, recent swine and canine studies have not demonstrated stunning-dependent cTnI degradation. Methods and Results-To address the universality of cTnI modification, myocardial biopsy samples were obtained from coronary artery bypass patients (nϭ37) before and 10 minutes after removal of cross-clamp. Analysis of biopsy samples for cTnI by Western blotting revealed a spectrum of modified cTnI products in myocardium both before and after cross-clamp, including degradation products (7 products resulting from differential N-and C-terminal processing) and covalent complexes (3 products). In particular, a 22-kDa cTnI degradation product with C-terminal proteolysis was identified, which may represent an initial ischemia-dependent cTnI modification, similar to cTnI observed in stunned rat myocardium. Although no systematic change in amount of modified cTnI was observed, subgroups of patients displayed an increase (nϭ10, 85Ϯ5% of cTnI remaining intact before cross-clamp versus 75Ϯ5% after) or a decrease (nϭ12, 67Ϯ5% before versus 78Ϯ5% after). Electron microscopy demonstrated normal ultrastructure in biopsy samples, which suggests no necrosis was present. In addition, cTnI modification products were observed in serum through a modified SDS-PAGE methodology. Conclusions-cTnI modification, in particular proteolysis, occurs in myocardium of bypass patients and may play a key role in stunning in some bypass patients. (Circulation. 2001;103:58-64.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.