Recognising that species interact across a range of spatial scales, we explore how landscape structure interacts with temperature to influence persistence. Specifically, we recognise that few studies indicate thermal shifts as the proximal cause of species extinctions; rather, species interactions exacerbated by temperature result in extinctions. Using microcosm‐based experiments, as models of larger landscape processes, we test hypotheses that would be problematic to address through field work. A text‐book predator–prey system (the ciliates Didinium and Paramecium) was used to compare three landscapes: an unfragmented landscape subjected to uniform temperatures (10, 20, 30°C); a fragmented landscape (potentially hosting metapopulations) subjected to these three temperatures; and a fragmented landscape subjected to a spatial temperature gradient (∼ 10 to 30°C) – despite the prevalence of natural temperature ecoclines this is the first time such an analysis has been conducted. Initial thermal response‐analysis (growth, mortality, and movement measured between 10 and 30°C) suggested that as temperature increased, the predator might drive the prey to extinction. Thermal preferences (measured at 5 temperatures between 10 and 30°C), indicated that both predator and prey preferred warmer temperatures, with the predator exhibiting the stronger preference, suggesting that cooler regions might act as a prey‐refuge. The landscape level observations, however, did not entirely support the predictions. First, in the unfragmented landscape, increased temperature led to extinctions, but at the highest temperature (where the predator growth can be reduced) the prey survived. Second, at high temperatures the fragmented landscape failed to host metapopulations that would allow predator–prey persistence. Third, the thermal ecocline did not provide heterogeneity that improved stability; rather it forced both species to occupy a smaller realized space, leading toward extinctions. These findings reveal that temperature‐impacted rates and temperature preferences combine to drive predator–prey dynamics and persistence across landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.