Manganese(II) pentaazamacrocyclic complexes (MnPAMs) can act as small-molecule mimics of manganese superoxide dismutase (MnSOD) with potential therapeutic application in conditions linked to oxidative stress. Previously, the in vitro mechanism of action has been determined, their activity has been demonstrated in cells, and some representatives of this class of MnSOD mimetics have entered clinical trials. However, MnPAM uptake, distribution, and metabolism in cells are largely unknown. Therefore, we have used X-ray fluorescence microscopy (XFM) and X-ray absorption spectroscopy (XAS) to study the cellular fate of a number of MnPAMs. We have also synthesized and characterized fluorescently labeled (pyrene and rhodamine) manganese(II) pyane [manganese(II) trans-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene] derivatives and investigated their utility for cellular imaging of MnPAMs. Their SOD activity was determined via a direct stopped-flow technique. XFM experiments show that treatment with amine-based manganese(II) pyane type pentaazamacrocycles leads to a 10-100-fold increase in the overall cellular manganese levels compared to the physiological levels of manganese in control cells. In treated cells in general, manganese was distributed throughout the cell body, with a couple of notable exceptions. The lipophilicity of the MnPAMs, examined by partitioning in octanol-buffer system, was a good predictor of the relative cellular manganese levels. Analysis of the XAS data of treated cells revealed that some fraction of amine-based MnPAMs taken up by the cells remained intact, with the rest transformed into SOD-active manganese(II) phosphate. Higher phosphate binding constants, determined from the effect of the phosphate concentration on in vitro SOD activity, were associated with more extensive metabolism of the amine-based MnPAMs to manganese(II) phosphate. In contrast, the imine-based manganese(II) pydiene complex that is prone to hydrolysis was entirely decomposed after uptake and free manganese(II) was oxidized to a manganese(III) oxide type species, in cytosolic compartments, possibly mitochondria. Complex stability constants (determined for some of the MnPAMs) are less indicative of the cellular fate of the complexes than the corresponding phosphate binding constants.
Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO)(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.
The work is significant as it links, for the first time, the protective action of selenium compounds against redox stress with particular chemical speciation using a direct measurement approach.
Single drug-based cancer therapies are frequently associated with the development of drug resistance. To overcome this problem, combination therapy with two or more anticancer drugs is a promising strategy, but clinical studies are logistically challenging and costly. Intermediary in vitro studies, however, can provide critical insight to decide whether one should proceed to in vivo studies. To this end, cisplatin and the Ru-based anticancer drug NAMI-A were added to human plasma and the size distribution of Pt-containing and Ru-containing entities was determined over a 2 h period. The results revealed a dramatically different rate of plasma protein binding for each drug and/or their hydrolysis products. Both drugs bound to the same apparent plasma proteins, but crucially they did not adversely affect each other's metabolism. Therefore, combination therapy of patients with these metallodrugs should be further assessed in clinical studies in order to systematically develop an effective combination therapy protocol to prevent the resurgence of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.