STARR-seq technology has employed progressively more complex genomic libraries and increased sequencing depths. An issue with the increased complexity and depth is that the coverage in STARR-seq experiments is non-uniform, overdispersed, and often confounded by sequencing biases, such as GC content. Furthermore, STARR-seq readout is confounded by RNA secondary structure and thermodynamic stability. To address these potential confounders, we developed a negative binomial regression framework for uniformly processing STARR-seq data, called STARRPeaker. Moreover, to aid our effort, we generated whole-genome STARR-seq data from the HepG2 and K562 human cell lines and applied STARRPeaker to comprehensively and unbiasedly call enhancers in them.
Alternative RNA splicing provides an important means to expand metazoan transcriptome diversity. Contrary to what was accepted previously, splicing is now thought to predominantly take place during transcription. Motivated by emerging data showing the physical proximity of the spliceosome to Pol II, we surveyed the effect of epigenetic context on cotranscriptional splicing. In particular, we observed that splicing factors were not necessarily enriched at exon junctions and that most epigenetic signatures had a distinctly asymmetric profile around known splice sites. Given this, we tried to build an interpretable model that mimics the physical layout of splicing regulation where the chromatin context progressively changes as the Pol II moves along the guide DNA. We used a recurrent-neural-network architecture to predict the inclusion of a spliced exon based on adjacent epigenetic signals, and we showed that distinct spatio-temporal features of these signals were key determinants of model outcome, in addition to the actual nucleotide sequence of the guide DNA strand. After the model had been trained and tested (with >80% precision-recall curve metric), we explored the derived weights of the latent factors, finding they highlight the importance of the asymmetric time-direction of chromatin context during transcription.
Motivation Recently, many chromatin immunoprecipitation sequencing experiments have been carried out for a diverse group of transcription factors (TFs) in many different types of human cells. These experiments manifest large-scale and dynamic changes in regulatory network connectivity (i.e. network ‘rewiring’), highlighting the different regulatory programs operating in disparate cellular states. However, due to the dense and noisy nature of current regulatory networks, directly comparing the gains and losses of targets of key TFs across cell states is often not informative. Thus, here, we seek an abstracted, low-dimensional representation to understand the main features of network change. Results We propose a method called TopicNet that applies latent Dirichlet allocation to extract functional topics for a collection of genes regulated by a given TF. We then define a rewiring score to quantify regulatory-network changes in terms of the topic changes for this TF. Using this framework, we can pinpoint particular TFs that change greatly in network connectivity between different cellular states (such as observed in oncogenesis). Also, incorporating gene expression data, we define a topic activity score that measures the degree to which a given topic is active in a particular cellular state. And we show how activity differences can indicate differential survival in various cancers. Availability and Implementation The TopicNet framework and related analysis were implemented using R and all codes are available at https://github.com/gersteinlab/topicnet. Supplementary information Supplementary data are available at Bioinformatics online.
RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation and disease. Their binding sites cover more of the genome than coding exons; nevertheless, most noncoding variant prioritization methods only focus on transcriptional regulation. Here, we integrate the portfolio of ENCODE-RBP experiments to develop RADAR, a variant-scoring framework. RADAR uses conservation, RNA structure, network centrality, and motifs to provide an overall impact score. Then, it further incorporates tissue-specific inputs to highlight disease-specific variants. Our results demonstrate RADAR can successfully pinpoint variants, both somatic and germline, associated with RBPfunction dysregulation, which cannot be found by most current prioritization methods, for example, variants affecting splicing.
The recent explosion of wearable technology and the associated concerns prompted the International Federation of Sports Medicine (FIMS) to create a quality assurance standard for Wearable Devices, which provides commissioned testing of marketing claims and endorsement of commercial wearables that test favorably. An Open Forum as announced in the conference advertising was held at the annual meeting of the New England Regional Chapter of the American College of Sports Medicine (NEACSM) on November 7-8, 2019 in Providence, Rhode Island, USA for attending NEACSM members to voice their input on the process. Herein we report the proceedings. The round table participants perceived the quality assurance standard to be important, but identified some practical process challenges that included the broad scope and complexity of the device universe, the need for a multiphase testing pathway, and the associated fees for product evaluation. The participants also supported the evaluation of device data analysis, behavioral influences, user experience in the overall evaluation. Looking forward, the FIMS quality assurance standard faces the challenge of balancing these broader perspectives with practical constraints of budget, facilities, time and human resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.