Background: While a large number of studies have investigated the anatomic, hormonal, and biomechanical risk factors related to musculoskeletal (MSK) injury risk, there is growing evidence to suggest that cognition is an important injury contributor in the athletic population. A systematic review of the available evidence regarding the influence of cognitive performance on MSK injury risk has yet to be published in the sports medicine literature. Purpose/Hypothesis: The purpose was to determine the effects of cognition on (1) MSK biomechanics during sports-specific tasks and (2) MSK injury occurrence in the athletic population. It was hypothesized that athletes with lower cognitive performance would demonstrate biomechanical patterns suggestive of MSK injury risk and that injured athletes would perform worse on baseline measures of cognition as compared with their noninjured counterparts. Study Design: Systematic review. Methods: PubMed and SPORTDiscus were searched from January 2000 to January 2020. Manual searches were performed on the reference lists of the included studies. A search of the literature was performed for studies published in English that reported MSK biomechanics as a function of cognitive performance and MSK injury occurrence after baseline measures of cognition. Two independent reviewers extracted pertinent study data in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 guidelines and assessed study quality using the Quality Assessment Tool for Observational Cohort and Cross-sectional Studies from the National Institutes of Health. A meta-analysis was not performed, owing to the heterogeneous nature of the study designs. Results: Ten studies met inclusion criteria: 4 cognition–MSK biomechanics studies and 6 cognition–MSK injury studies. All 4 cognition–MSK biomechanics studies demonstrated that worse performance on measures of cognition was associated with lower extremity MSK biomechanical patterns suggestive of greater risk for MSK injury. The majority of the cognition–MSK injury studies demonstrated that injured athletes significantly differed on baseline cognition measures versus matched controls or that cognitive performance was a significant predictor for subsequent MSK injury. Conclusion: Although the literature exploring cognitive contributions to MSK injury risk is still in its infancy, it is suggested that sports medicine personnel conduct baseline assessments of cognition—in particular, reaction time and working memory—to identify which athletes may be at elevated risk for future MSK injury.
Background: Collegiate athletes with prior sports-related concussion (SRC) are at increased risk for lower extremity (LE) injuries; however, the biomechanical and cognitive mechanisms underlying the SRC-LE injury relationship are not well understood. Purpose: To examine the association between cognitive performance and LE land-and-cut biomechanics among collegiate athletes with and without a history of SRC and to determine the association among multiple cognitive testing batteries in the same athlete cohort. Study Design: Controlled laboratory study. Methods: A cohort of 20 collegiate athletes with prior SRC (9 men, 11 women; mean ± standard deviation [SD] age, 20.5 ± 1.3 years; mean ± SD time since last SRC, 461 ± 263 days) and 20 matched controls (9 men, 11 women; mean ± SD age, 19.8 ± 1.3 years) completed land-and-cut tasks using the dominant and nondominant limbs. LE biomechanical variables and a functional visuomotor reaction time (FVMRT) were collected during each trial. Athletes also completed the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT) and Senaptec Sensory Station assessments. Results: In the SRC cohort, Pearson correlation coefficients indicated slower FVMRT was moderately correlated with decreased dominant limb ( r = –0.512) and nondominant limb ( r = –0.500) knee flexion, while increased dominant limb knee abduction moment was moderately correlated with decreased ImPACT Visual Memory score ( r = –0.539) and slower ImPACT Reaction Time ( r = 0.515). Most computerized cognitive measures were not associated with FVMRT in either cohort ( P > .05). Conclusion: Decreased reaction time and working memory performance were moderately correlated with decreased sagittal plane knee motion and increased frontal plane knee loading in collegiate athletes with a history of SRC. The present findings suggest a potential unique relationship between cognitive performance and LE neuromuscular control in athletes with a history of SRC injury. Last, we determined that computerized measures of cognitive performance often utilized for SRC management are dissimilar to sport-specific cognitive processes. Clinical Relevance: Understanding the relationship between cognitive performance and LE biomechanics in athletes with prior SRC may inform future clinical management strategies. Future research should prospectively assess cognitive and biomechanical measures, along with LE injury incidence, to identify mechanisms underlying the SRC-LE injury relationship.
Recent evidence suggests previously concussed athletes are at greater risk for lower-extremity (LE) injuries than are controls. However, little is known regarding the influence of sports-related concussion (SRC) on landing biomechanics that may provide a mechanistic rationale for LE injury risk. The purpose of this investigation was to examine LE drop-landing biomechanics in adolescent athletes with and without a previous SRC history. Participants included 10 adolescent athletes with an SRC history and 11 controls from multiple sports. Three-dimensional kinematic and kinetic data associated with LE injury risk were analyzed across 5 trials for 30- and 60-cm landing heights. Multivariate analyses indicated group differences in landing patterns from the 30- (P = .041) and 60-cm (P = .015) landing heights. Follow-up analyses indicated that concussed adolescent athletes demonstrated significantly less ankle dorsiflexion and knee flexion versus controls when performing drop landings. Our findings suggest that previously concussed adolescent athletes complete drop-landing maneuvers with ankle and knee joint kinematic patterns that suggest greater risk for LE injury. While limitations such as sport variety and explicit LE injury history are present, the results of this study provide a possible biomechanical rationale for the association between SRC and LE injury risk.
Objective: Strategies to identify lower extremity musculoskeletal (LEMSK) injury risk have been informed by prospectively identified biomechanical and neuromuscular risk factors. Emergent evidence suggests that cognitive and oculomotor performance may also contribute to LEMSK injury. The purpose of this study was to determine whether prospective cognitive and oculomotor measures identify adolescent athletes who sustain an in-season LEMSK injury. Design: Prospective longitudinal study. Settings: Controlled laboratory and athletic event settings. Participants: Four hundred eighty-eight adolescent male football and female soccer athletes aged 13 to 18 years. Assessment of risk factors: Preseason baseline cognitive and oculomotor performance: Attention Network Task (ANT), cued task switching, King-Devick test, and near point of convergence. Main outcome measure: Incidence of LEMSK sprains and strains during a single competitive season. Results: Attention Network Task-orienting network reaction time (RT) was the only cognitive or oculomotor measure significantly associated with LEMSK injury [B 5 1.015, 95% confidence interval (CI): 1.01-1.024, P , 0.01]. Every 10 milliseconds increase in orienting network RT was associated with a 15% increased risk for LEMSK injury. Athletes demonstrating an orienting network RT $ 32.8 milliseconds had a higher risk for LEMSK injury relative to athletes below the cut-point (relative risk, 2.62; 95% CI, 1.52-4.52; odds ratio, 3.00; 95% CI, 1.63-5.52). Conclusions: Deficits in visual-spatial components of attention were associated with 2.62 times greater risk for LEMSK injury in adolescent athletes. The present results add evidence to suggest that visual-spatial attentional processing contributes to LEMSK injury and may supplement previously established LEMSK injury risk assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.