Single molecule localization based super-resolution imaging techniques require repeated localization of many single emitters. We describe a method that uses the maximum likelihood estimator to localize multiple emitters simultaneously within a single, two-dimensional fitting sub-region, yielding an order of magnitude improvement in the tolerance of the analysis routine with regards to the single-frame active emitter density. Multiple-emitter fitting enables the overall performance of single-molecule super-resolution to be improved in one or more of several metrics that result in higher single-frame density of localized active emitters. For speed, the algorithm is implemented on Graphics Processing Unit (GPU) architecture, resulting in analysis times on the order of minutes. We show the performance of multiple emitter fitting as a function of the single-frame active emitter density. We describe the details of the algorithm that allow robust fitting, the details of the GPU implementation, and the other imaging processing steps required for the analysis of data sets.
Podosomes are multimolecular mechanosensory structures with a protrusive actin core and an adhesive ring of integrins and adaptor proteins. Dual-color direct stochastic optical reconstruction microscopy is used to reveal the nanoscale localization of the ring components αMβ2 integrin, talin, and vinculin with respect to the actin core.
Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.
In the distal tubule, Na(+) resorption is mediated by epithelial Na(+) channels (ENaC). Hormones such as aldosterone, vasopressin, and insulin modulate ENaC membrane targeting, assembly, and/or kinetic activity, thereby regulating salt and water homeostasis. Insulin binds to a receptor on the basal membrane to initiate a signal transduction cascade that rapidly results in an increase in apical membrane ENaC. Current models of this signaling pathway envision diffusion of signaling intermediates from the basal to the apical membrane. This necessitates diffusion of several high-molecular-weight signaling elements across a three-dimensional space. Transduction of the insulin signal involves the phosphoinositide pathway, but how and where this lipid-based signaling pathway controls ENaC activity is not known. We used tagged channels, biosensor lipid probes, and intravital imaging to investigate the role of lipids in insulin-stimulated Na(+) flux. Insulin-stimulated delivery of intracellular ENaC to apical membranes was concurrent with plasma membrane-limited changes in lipid composition. Notably, in response to insulin, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) formed in the basolateral membrane, rapidly diffused within the bilayer, and crossed the tight junction to enter the apical membrane. This novel signaling pathway takes advantage of the fact that the lipids of the plasma membrane's inner leaflet are not constrained by the tight junction. Therefore, diffusion of PIP(3) as a signal transduction intermediate occurs within a planar surface, thus facilitating swift responses and confining and controlling the signaling pathway.
Summary Multiphoton fluorescence excitation microscopy is almost invariably conducted with samples whose refractive index differ from that of the objective immersion medium, conditions that cause spherical aberration. Due to the quadratic nature of multiphoton fluorescence excitation, spherical aberration is expected to profoundly affect the depth dependence of fluorescence excitation. In order to determine the effect of refractive index mismatch in multiphoton fluorescence excitation microscopy, we measured signal attenuation, photobleaching rates and resolution degradation with depth in homogeneous samples with minimal light scattering and absorption over a range of refractive indices. These studies demonstrate that signal levels and resolution both rapidly decline with depth into refractive index mismatched samples. Analyses of photobleaching rates indicate that the preponderance of signal attenuation with depth results from decreased rates of fluorescence excitation, even in a system with a descannd emission collection pathway. Similar results were obtained in analyses of fluorescence microspheres embedded in rat kidney tissue, demonstrating that spherical aberration is an important limiting factor in multiphoton fluorescence excitation microscopy of biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.