Abstract. This paper provides an empirical test of a hypothesis, which describes the effects of structural mechanisms in genetic programming. In doing so, the paper offers a test problem anticipated by this hypothesis. The problem is tunably difficult, but has this p roperty because tuning is a ccomplished through changes in structure. Content is not involved in tuning. The results support a prediction of the hypothesis -that GP search space is significantly constrained as an outcome of structural mechanisms.
Abstract. This paper presents methods to visualize the structure of trees that occur in genetic programming. These methods allow for the inspection of structure of entire trees of arbitrary size. The methods also scale to allow for the inspection of structure for an entire population. Examples are given from a typical problem. The examples indicate further studies that might be enabled by visualizing structure at these scales.
Abstract. We use the genetic programming (GP) paradigm for two tasks. The first task given a GP is the generation of rules for the target / clutter classification of a set of synthetic aperture radar (SAR) images, the second, the generation of rules for the identification of tanks in a second set of SAR images. To perform these tasks, previously defined feature sets are generated on the various images, and GP is used to select relevant features and methods of analyzing these features. GP results are then compared with previous work using the feature sets.
We analyze the fitness dynamics of a (1+1) mutation-only genetic algorithm (GA) operating on a family of simple time-dependent fitness functions. Resulting models of behavior are used in the prediction of GA performance on this fitness function. The accuracy of performance predictions are compared to actual GA runs, and results are discussed in relation to analyses of the stationary version of the dynamic fitness landscape and to prior work performed in the field of evolutionary optimization of dynamic fitness functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.