While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.
Homeobox transcription factor A9 (HoxA9) is overexpressed in 70% of patients diagnosed with acute myeloid leukemia (AML), whereas only a small subset of AML patients respond to current differentiation therapies. A cell line overexpressing HoxA9 was derived from the bone marrow of a lysozyme-GFP mouse. In this fashion, GFP served as an endogenous reporter of differentiation, permitting a high-throughput phenotypic screen against the MLPCN library. Two chemical scaffolds were optimized for activity yielding compound ML390, and genetic resistance and sequencing efforts identified dihydroorotate dehydrogenase (DHODH) as the target enzyme. The DHODH inhibitor brequinar works against these leukemic cells as well. The X-ray crystal structure of ML390 bound to DHODH elucidates ML390s binding interactions.
A recessive nonsense mutation in the zebrafish recombination activating gene 1 (rag1) gene results in defective V(D)J recombination; however, animals homozygous for this mutation (rag1-/-) are reportedly viable and fertile in standard, nonsterile aquarium conditions but display increased mortality after intraperitoneal injection with mycobacteria. Based on their survival in nonsterile environments, we hypothesized that the rag1-/- zebrafish may possess an “enhanced” innate immune response to compensate for the lack of an adaptive immune system. To test this hypothesis, microarray analyses were used to compare the expression profiles of the intestines and hematopoietic kidneys of rag1 deficient zebrafish to the expression profiles of control (heterozygous) siblings. The expression levels of 12 genes were significantly altered in the rag1-/- kidney including the up regulation of a putative interferon stimulated gene, and the down regulation of genes encoding fatty acid binding protein 10, keratin 5 and multiple heat shock proteins. The expression levels of 87 genes were shown to be significantly altered in the rag1-/- intestine; the majority of these differences reflect increased expression of innate immune genes, including those of the coagulation and complement pathways. Subsequent analyses of orthologous coagulation and complement genes in Rag1-/- mice indicate increased transcription of the complement C4 gene in the Rag1-/-intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.