Harnessing the plant microbiome has the potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses, while also relieving economic and environmental costs of crop production. While previous studies have gained valuable insights into the underlying genetics facilitating plant-fungal interactions, these have largely been skewed towards certain fungal clades (e.g. arbuscular mycorrhizal fungi). Several different phyla of fungi have been shown to positively impact plant growth rates, including Mortierellaceae fungi. However, the extent of the plant growth promotion (PGP) phenotype(s), their underlying mechanism(s), and the impact of bacterial endosymbionts on fungal-plant interactions remain poorly understood for Mortierellaceae. In this study, we focused on the symbiosis between soil fungus Linnemannia elongata (Mortierellaceae) and Arabidopsis thaliana (Brassicaceae), as both organisms have high-quality reference genomes and transcriptomes available, and their lifestyles and growth requirements are conducive to research conditions. Further, L. elongata can host bacterial endosymbionts related to Mollicutes and Burkholderia. The role of these endobacteria on facilitating fungal-plant associations, including potentially further promoting plant growth, remains completely unexplored. We measured Arabidopsis aerial growth at early and late life stages, seed production, and used mRNA sequencing to characterize differentially expressed plant genes in response to fungal inoculation with and without bacterial endosymbionts. We found that L. elongata improved aerial plant growth, seed mass and altered the plant transcriptome, including the upregulation of genes involved in plant hormones and “response to oxidative stress”, “defense response to bacterium”, and “defense response to fungus”. Furthermore, the expression of genes in certain phytohormone biosynthetic pathways were found to be modified in plants treated with L. elongata. Notably, the presence of Mollicutes- or Burkholderia-related endosymbionts in Linnemannia did not impact the expression of genes in Arabidopsis or overall growth rates. Together, these results indicate that beneficial plant growth promotion and seed mass impacts of L. elongata on Arabidopsis are likely driven by plant hormone and defense transcription responses after plant-fungal contact, and that plant phenotypic and transcriptional responses are independent of whether the fungal symbiont is colonized by Mollicutes or Burkholderia-related endohyphal bacteria.
The grape berry moth, Paralobesia viteana (Clemens), is a key pest of vineyards in eastern North America that overwinters as pupae in leaf litter on the vineyard floor. This presents an opportunity for tillage to disturb and bury the pupae, providing a potential nonchemical approach to control of this pest. Using a Lilleston-style rotary cultivator, we determined the distribution of pupae within the soil profile after single tillage passes, measured the type and severity of damage inflicted on pupae, and investigated how these effects on pupae influenced their survival. Survivorship of pupae recovered from the vineyard immediately after tillage and held until emergence was not significantly different from those recovered from an untilled control area, indicating little effect of mechanical damage on this pest. However, a single pass of the tillage implement buried three-quarters of pupae under at least 1 cm of soil. A laboratory experiment to recreate these conditions resulted in significant increase in mortality when pupae were buried in more than 1 cm of sand. We conclude that 1) interference with adult emergence of diapausing pupae via burial is the primary mechanism by which tillage controls grape berry moth, and 2) efforts to optimize the impact of tillage on grape berry moth populations should focus on maximizing the number of pupae buried. We discuss the potential integration of tillage into different vineyard management systems to enhance pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.