Graph embeddings have emerged as the de facto representation for modern machine learning over graph data structures. The goal of graph embedding models is to convert high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces that preserve the graph structure properties. However, learning a graph embedding model is a resource intensive process, and existing solutions rely on expensive distributed computation to scale training to instances that do not fit in GPU memory. This demonstration showcases Marius: a new open-source engine for learning graph embedding models over billion-edge graphs on a single machine. Marius is built around a recently-introduced architecture for machine learning over graphs that utilizes pipelining and a novel data replacement policy to maximize GPU utilization and exploit the entire memory hierarchy (including disk, CPU, and GPU memory) to scale to large instances. The audience will experience how to develop, train, and deploy graph embedding models using Marius' configuration-driven programming model. Moreover, the audience will have the opportunity to explore Marius' deployments on applications including link-prediction on WikiKG90M and reasoning queries on a paleobiology knowledge graph. Marius is available as open source software at https://marius-project.org.
Graph Neural Networks (GNNs) have emerged as a powerful model for ML over graph-structured data. Yet, scalability remains a major challenge for using GNNs over billion-edge inputs. The creation of mini-batches used for training incurs computational and data movement costs that grow exponentially with the number of GNN layers as state-of-the-art models aggregate information from the multi-hop neighborhood of each input node. In this paper, we focus on scalable training of GNNs with emphasis on resource efficiency. We show that out-of-core pipelined mini-batch training in a single machine outperforms resource-hungry multi-GPU solutions. We introduce Marius++, a system for training GNNs over billion-scale graphs. Marius++ provides disk-optimized training for GNNs and introduces a series of data organization and algorithmic contributions that 1) minimize the memory-footprint and end-to-end time required for training and 2) ensure that models learned with diskbased training exhibit accuracy similar to those fully trained in mixed CPU/GPU settings. We evaluate Marius++ against PyTorch Geometric and Deep Graph Library using seven benchmark (model, data set) settings and find that Marius++ with one GPU can achieve the same level of model accuracy up to 8× faster than these systems when they are using up to eight GPUs. For these experiments, disk-based training allows Marius++ deployments to be up to 64× cheaper in monetary cost than those of the competing systems.
There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query corresponds to predicates over relational attributes associated with the underlying data vectors. For example, given past KG queries for a song entity, we want to construct new queries for new song entities whose vector representations are close to the vector representation of the entity in the past KG query. But entities in a KG also have non-vector attributes such as a song associated with an artist, a genre, and a release date. Therefore, suggested entities must also satisfy query predicates over non-vector attributes beyond a vector-based similarity predicate. While these tasks are central to KGs, our contributions are generally applicable to hybrid queries. In contrast to prior works that optimize online queries, we focus on enabling efficient batch processing of past hybrid query workloads. We present our system, HQI, for high-throughput batch processing of hybrid queries. We introduce a workload-aware vector data partitioning scheme to tailor the vector index layout to the given workload and describe a multi-query optimization technique to reduce the overhead of vector similarity computations. We evaluate our methods on industrial workloads and demonstrate that HQI yields a 31× improvement in throughput for finding related KG queries compared to existing hybrid query processing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.