We propose a general formalism, within large deviation theory, giving access to the exact statistics of fluctuations of ballistically transported conserved quantities in homogeneous, stationary states. The formalism is expected to apply to any system with an Euler hydrodynamic description, classical or quantum, integrable or not, in or out of equilibrium. We express the exact scaled cumulant generating function (or full counting statistics) for any (quasi-)local conserved quantity in terms of the flux Jacobian. We show that the "extended fluctuation relations" of Bernard and Doyon follow from the linearity of the hydrodynamic equations, forming a marker of "freeness" much like the absence of hydrodynamic diffusion does. We show how an extension of the formalism gives exact exponential behaviours of spatio-temporal two-point functions of twist fields, with applications to order-parameter dynamical correlations in arbitrary homogeneous, stationary state. We explain in what situations the large deviation principle at the basis of the results fail, and discuss how this connects with nonlinear fluctuating hydrodynamics. Applying the formalism to conformal hydrodynamics, we evaluate the exact cumulants of energy transport in quantum critical systems of arbitrary dimension at low but nonzero temperatures, observing a phase transition for Lorentz boosts at the sound velocity. AppendicesA Derivation of the main result (3.6) with (3.2)
We propose exact results for the full counting statistics, or the scaled cumulant generating function, pertaining to the transfer of arbitrary conserved quantities across an interface in homogeneous integrable models out of equilibrium. We do this by combining insights from generalised hydrodynamics with a theory of large deviations in ballistic transport. The results are applicable to a wide variety of physical systems, including the Lieb-Liniger gas and the Heisenberg chain. We confirm the predictions in non-equilibrium steady states obtained by the partitioning protocol, by comparing with Monte Carlo simulations of this protocol in the classical hard rod gas. We verify numerically that the exact results obey the correct non-equilibrium fluctuation relations with the appropriate initial conditions.
The Large-Volume Flow-Through Detector System (LVFTDS) was specially designed by LNL to monitor alpha radiation emitted by plutonium, uranium, and americium in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. The goal of this effort was to provide mechanical-design information for the installation of the LVFTDS in an incinerator, with a particular emphasis on the ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: (1) Calculation of the pressure drop through the system; (2) Materials testing to determine surrogate materials for wind-tunnel testing; (3) Wind-tunnel testing of an actual configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.