Sugar-oligoamides have been designed and synthesized as structurally simple carbohydrate-based ligands to study carbohydrate-DNA interactions. The general design of the ligands 1-3 has been done as to favor the bound conformation of Distamycin-type gamma-linked covalent dimers which is a hairpin conformation. Indeed, NMR analysis of the sugar-oligoamides in the free state has indicated the presence of a percentage of a hairpin conformation in aqueous solution. The DNA binding activity of compounds 1-3 was confirmed by calf thymus DNA (ct-DNA) NMR titration. Interestingly, the binding of the different sugar-oligoamides seems to be modulated by the sugar configuration. Semiquantitative structural information about the DNA ligand complexes has been derived from NMR data. A competition experiment with Netropsin suggested that the sugar-oligoamide 3 bind to DNA in the minor groove. The NMR titrations of 1-3 with poly(dA-dT) and poly(dG-dC) suggested preferential binding to the ATAT sequence. TR-NOE NMR experiments for the sugar-oligoamide 3-ct-DNA complex both in D(2)O and H(2)O have confirmed the complex formation and given information on the conformation of the ligand in the bound state. The data confirmed that the sugar-oligoamide ligand is a hairpin in the bound state. Even more relevant to our goal, structural information on the conformation around the N-glycosidic linkage has been accessed. Thus, the sugar asymmetric centers pointing to the NH-amide and N-methyl rims of the molecule have been characterized.
Neighbouring groups can be strategically located to polarise HO.OH intramolecular hydrogen bonds in an intended direction. A group with a unique hydrogen-bond donor or acceptor character, located at hydrogen-bonding distance to a particular OH group, has been used to initiate the hydrogen-bond network and to polarise a HO.OH hydrogen bond in a predicted direction. This enhanced the donor character of a particular OH group and made it a cooperative hydrogen-bond centre. We have proved that a five-membered-ring intramolecular hydrogen bond established between an amide NH group and a hydroxy group (1,2-e,a), which is additionally located in a 1,3-cis-diaxial relationship to a second hydroxy group, can be used to select a unique direction on the six-membered-ring intramolecular hydrogen bond between the two axial OH groups, so that one of them behaves as an efficient cooperative donor. Talose derivative 3 was designed and synthesised to prove this hydrogen-bonding network by NMR spectroscopy, and the mannopyranoside derivatives 1 and 2 were used as models to demonstrate the presence in solution of the 1,2-(e,a)/five-membered-ring intramolecular hydrogen bond. Once a well-defined hydrogen-bond is formed between the OH and the amido groups of a pyranose ring, these hydrogen-bonding groups no longer act as independent hydrogen-bonding centres, but as hydrogen-bonding arrays. This introduces a new perspective on the properties of carbohydrate OH groups and it is important for the de novo design of molecular recognition processes, at least in nonpolar media. Carbohydrates 1-3 have shown to be efficient phosphate binders in nonpolar solvents owing to the presence of cooperative hydroxy centres in the molecule.
The preparation and cycloaddition reactions of new imidazoline nitrones are described. The imidazo[1,2‐b]isoxazole alkene cycloadducts are formed via an exo approach. An example has been tranformed into a pyrrolo[1,2‐a]imidazole as a prelude to a new pyrrolidine synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.