Secretory phospholipase A2 (sPLA2) expression is increased in several cancers and has been shown to trigger release from some lipid carriers. This study used electrospray ionization mass spectrometry (ESI-MS) and release of 6-carboxyfluorescein (6-CF) to determine the effects of sPLA2 on various liposome formulations. Different combinations of zwitterionic [1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, and 1,2- distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)] and anionic [1,2-distearoyl-sn-glycero-3-phosphatidic acid, 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPG), 1,2-distearoyl-sn-glycero-3-phosphatidylserine, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–N-poly(ethylene glycol) 2000 (DSPE–PEG)] phospholipids were examined. DSPG and DSPE were most susceptible to sPLA2-mediated degradation compared with other phospholipids. Increased 6-CF release was observed after inclusion of 10 mol % DSPE and anionic lipids into different liposome formulations. Group IIa sPLA2-mediated 6-CF release was less than Group III and relatively insensitive to cholesterol (Chol), whereas Chol reduced sPLA2-mediated release. Inclusion of DSPE–PEG increased sPLA2-mediated 6-CF release, whereas serum reduced lipid degradation and 6-CF release significantly. These data demonstrate that ESI-MS and 6-CF release were useful in determining the selectivity of sPLA2 and release from liposomes, that differences in the activity of different sPLA2 isoforms exist, and that DSPE–PEG enhanced sPLA2-mediated release of liposomal constituents. These findings will aid in the selection of lipids and optimization of the kinetics of drug release for the treatment of cancers and diseases of inflammation in which sPLA2 expression is increased.
Secretory phospholipase A2 (sPLA2) cleave phospholipids at sn-2 ester bonds, releasing lysophospholipids and fatty acids, and are over expressed in several pathologies, including inflammation, arthritis, sepsis and breast and prostate cancers. Herein we evaluated the therapeutic activity of liposomes engineered to be responsive to different sPLA2 isoforms compared to clinically used long-circulating (pegylated) sterically stabilized liposomes (SSL) in vitro and in vivo, and assess differences in role of sPLA2 in the mechanism of uptake and delivery of these nanoparticles. Exposing sPLA2 responsive liposomes (SPRL) to sPLA2 increased the release of intraluminal entrapped contents in a time-dependent manner that was inhibited by the sPLA2 inhibitor LY3117272. Treatment of prostate cancer cells with doxorubicin encapsulated in SSL and SPRL resulted in cytotoxicity in LNCaP, DU-145 and PC-3 cells lines comparable to free drug. Interestingly, cytotoxicity was not altered by sPLA2 inhibition. Tracking of drug and liposome delivery using fluorescence microscopy and flow cytometry, we demonstrated that drug uptake was liposome-dependent, as encapsulation of doxorubicin in SPRL resulted in 1.5 to 2-fold greater intracellular drug levels compared to SSL. Liposome uptake was cell-dependent and did not correlate to doxorubicin uptake; however, doxorubicin uptake was generally greatest in PC-3 cells, followed by DU-145 cells and then LNCaP cells. In almost all cases, uptake of one of our formulations, SPRL-E, was greater than SSL. The therapeutic activity of SPRL in vivo was demonstrated using a mouse xenograft model of human prostate cancer, which showed that doxorubicin entrapped within SPRL decreased tumor growth compared to SSL, suggesting that SPRL are more effective at slowing tumor growth than a SSL formulation similar to the FDA approved DOXIL™. Collectively, these data show the therapeutic activity of SPRL compared to SSL, yield insights into the mechanisms of action of these nanoparticles and suggest that SPRL could be useful for treatment of other pathologies that over express sPLA2.
The M-type phospholipase A2 receptor (PLA2R1) is a member of the C-type lectin superfamily and can internalize secreted phospholipase A2 (sPLA2) via endocytosis in non-cancer cells. sPLA2 itself was recently shown to be overexpressed in prostate tumors and to be a possible mediator of metastasis; however, little is known about the expression of PLA2R1 or its function in prostate cancers. Thus, we examined PLA2R1 expression in primary prostate cells (PCS-440-010) and human prostate cancer cells (LNCaP, DU-145, and PC-3), and we determined the effect of PLA2R1 knockdown on cytotoxicity induced by free or liposome-encapsulated chemotherapeutics. Immunoblot analysis demonstrated that the expression of PLA2R1 was higher in prostate cancer cells compared to that in primary prostate cells. Knockdown of PLA2R1 expression in PC-3 cells using shRNA increased cell proliferation and did not affect the toxicity of cisplatin, doxorubicin (Dox), and docetaxel. In contrast, PLA2R1 knockdown increased the in vitro toxicity of Dox encapsulated in sPLA2 responsive liposomes (SPRL) and correlated with increased Dox and SPRL uptake. Knockdown of PLA2R1 also increased the expression of Group IIA and X sPLA2. These data show the novel findings that PLA2R1 is expressed in prostate cancer cells, that PLA2R1 expression alters cell proliferation, and that PLA2R1 modulates the behavior of liposome-based nanoparticles. Furthermore, these studies suggest that PLA2R1 may represent a novel molecular target for controlling tumor growth or modulating delivery of lipid-based nanomedicines.
Haloenol pyran-2-ones and morpholin-2-ones were synthesized and evaluated as inhibitors of cell growth in two different prostate human cancer cell lines (PC-3 and LNCaP). Analogs derived from L- and D-phenylglycine were found to be the most effective antagonists of LNCaP and PC-3 cell growth. Additional studies reveal that the inhibitors induced G2/M arrest and the (S)-enantiomer of the phenylglycine-based derivatives was a more potent inhibitor of cytosolic iPLA2β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.