In this paper, we employ 99% intraday value-at-risk (VaR) and intraday expected shortfall (ES) as risk metrics to assess the competency of the Multiplicative Component Generalised Autoregressive Heteroskedasticity (MC-GARCH) models based on the 1-min EUR/USD exchange rate returns. Five distributional assumptions for the innovation process are used to analyse their effects on the modelling and forecasting performance. The high-frequency volatility models were validated in terms of in-sample fit based on various statistical and graphical tests. A more rigorous validation procedure involves testing the predictive power of the models. Therefore, three backtesting procedures were used for the VaR, namely, the Kupiec’s test, a duration-based backtest, and an asymmetric VaR loss function. Similarly, three backtests were employed for the ES: a regression-based backtesting procedure, the Exceedance Residual backtest and the V-Tests. The validation results show that non-normal distributions are best suited for both model fitting and forecasting. The MC-GARCH(1,1) model under the Generalised Error Distribution (GED) innovation assumption gave the best fit to the intraday data and gave the best results for the ES forecasts. However, the asymmetric Skewed Student’s-t distribution for the innovation process provided the best results for the VaR forecasts. This paper presents the results of the first empirical study (to the best of the authors’ knowledge) in: (1) forecasting the intraday Expected Shortfall (ES) under different distributional assumptions for the MC-GARCH model; (2) assessing the MC-GARCH model under the Generalised Error Distribution (GED) innovation; (3) evaluating and ranking the VaR predictability of the MC-GARCH models using an asymmetric loss function.
Purpose This study aims to use a novel methodology to investigate the performance of several multivariate value at risk (VaR) and expected shortfall (ES) models implemented to assess the risk of an equally weighted portfolio consisting of high-frequency (1-min) observations for five foreign currencies, namely, EUR/USD, GBP/USD, EUR/JPY, USD/JPY and GBP/JPY. Design/methodology/approach By applying the multiplicative component generalised autoregressive conditional heteroskedasticity (MC-GARCH) model on each return series and by modelling the dependence structure using copulas, the 95 per cent intraday portfolio VaR and ES are forecasted for an out-of-sample set using Monte Carlo simulation. Findings In terms of VaR forecasting performance, the backtesting results indicated that four out of the five models implemented could not be rejected at 5 per cent level of significance. However, when the models were further evaluated for their ES forecasting power, only the Student’s t and Clayton models could not be rejected. The fact that some ES models were rejected at 5 per cent significance level highlights the importance of selecting an appropriate copula model for the dependence structure. Originality/value To the best of the authors’ knowledge, this is the first study to use the MC-GARCH and copula models to forecast, for the next 1 min, the VaR and ES of an equally weighted portfolio of foreign currencies. It is also the first study to analyse the performance of the MC-GARCH model under seven distributional assumptions for the innovation term.
PurposeThe paper investigates into the human capital–economic growth nexus by arguing that investment in early education and health helps in achieving higher economic growth. Early investment in human capital matters most for economic growth than the increase in human capital over the years.Design/methodology/approachA dynamic vector error correction model (VECM) together with the impulse response function and variance decomposition are used on data for Mauritius from 1983 to 2019. The paper distinguishes between the short-run and the long-run effects of human capital measured by the pupil–teacher ratio in pre-primary education and life expectancy at birth.FindingsThis study’s findings reveal that investment in early education and health has contributed positively to growth performance. There is evidence for long-run growth effects arising from a positive shock in the education and health indicators.Originality/valueThis paper contributes to both the theoretical and empirical literature on the human capital–growth nexus. Mauritius as a natural resource poor small economy is an important case study as it has started early in investing in its people to promote economic growth.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-11-2021-0674.
Mortality forecasting has always been a target of study by academics and practitioners. Since the introduction and rising significance of securitization of risk in mortality and longevity, more in-depth studies regarding mortality have been carried out to enable the fair pricing of such derivatives. In this article, a comparative analysis is performed on the mortality forecasting accuracy of four mortality models. The methodology employs the Age-Period-Cohort model, the Cairns-Blake-Dowd model, the classical Lee-Carter model and the Kou-Modified Lee-Carter model. The Kou-Modified Lee-Carter model combines the classical Lee-Carter with the Double Exponential Jump Diffusion model. This paper is the first study to employ the Kou model to forecast French mortality data. The dataset comprises death data of French males from age 0 to age 90, available for the years 1900–2015. The paper differentiates between two periods: the 1900–1960 period where extreme mortality events occurred for French males and the 1961–2015 period where no significant jump is observed. The Kou-modified Lee-Carter model turns out to give the best mortality forecasts based on the RMSE, MAE, MPE and MAPE metrics for the period 1900–1960 during which the two World Wars occurred. This confirms that the consideration of jumps and leptokurtic features conveys important information for mortality forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.