Activation of estrogen receptor ␣ (ER␣) results in both induction and repression of gene transcription; while mechanistic details of estrogen induction are well described, details of repression remain largely unknown. We characterized several ER␣-repressed targets and examined in detail the mechanism for estrogen repression of Reprimo (RPRM), a cell cycle inhibitor. Estrogen repression of RPRM is rapid and robust and requires a tripartite interaction between ER␣, histone deacetylase 7 (HDAC7), and FoxA1. HDAC7 is the critical HDAC needed for repression of RPRM; it can bind to ER␣ and represses ER␣'s transcriptional activity-this repression does not require HDAC7's deacetylase activity. We further show that the chromatin pioneer factor FoxA1, well known for its role in estrogen induction of genes, is recruited to the RPRM promoter, is necessary for repression of RPRM, and interacts with HDAC7. Like other FoxA1 recruitment sites, the RPRM promoter is characterized by H3K4me1/me2. Estrogen treatment causes decreases in H3K4me1/me2 and release of RNA polymerase II (Pol II) from the RPRM proximal promoter. Overall, these data implicate a novel role for HDAC7 and FoxA1 in estrogen repression of RPRM, a mechanism which could potentially be generalized to many more estrogen-repressed genes and hence be important in both normal physiology and pathological processes.
Resistance to aromatase inhibitors (AIs) is a major clinical problem in the treatment of estrogen receptor positive breast cancer. In two breast cancer cell line models of AI resistance we identified widespread DNA hyper- and hypomethylation, with enrichment for promoter hypermethylation of developmental genes. For the homeobox gene HOXC10, methylation occurred in a CpG shore which overlapped with a functional ER binding site, causing repression of HOXC10 expression. Although short-term blockade of ER signaling caused relief of HOXC10 repression in both cell lines and breast tumors, it also resulted in concurrent recruitment of EZH2 and increased H3K27me3, ultimately transitioning to increased DNA methylation and silencing of HOXC10. Reduced HOXC10 in vitro and in xenografts resulted in decreased apoptosis and caused antiestrogen resistance. Supporting this, we used paired primary and metastatic breast cancer specimens to show that HOXC10 was reduced in tumors which recurred during AI treatment. We propose a model in which estrogen represses apoptotic and growth inhibitory genes such as HOXC10, contributing to tumor survival, whereas AIs induce these genes to cause apoptosis and therapeutic benefit, but long-term AI treatment results in permanent repression of these genes via methylation and confers resistance. Therapies aimed at inhibiting AI-induced histone and DNA methylation may be beneficial in blocking or delaying AI resistance.
The examination of scaffold attachment factor B1 (SAFB1) and its multiple functions and tasks in cellular processes provides insight into its role in diseases, such as cancer. SAFB1 is a large multi-domain protein with well-described functions in transcriptional repression, and RNA splicing. It is ubiquitously expressed, and has been shown to be important in numerous cellular processes including cell growth, stress response, and apoptosis. SAFB1 is part of a protein family with at least two other family members, SAFB2 and the SAFB-like transcriptional modulator SLTM. The goal of this prospect article is to summarize known functions of SAFB1, and its roles in cellular processes, but also to speculate on less well described, novel attributes of SAFB1, such as a potential role in chromatin organization. This timely review shows aspects of SAFB1, which are proving to have a complexity far greater than was previously thought.
Following the worldwide emergence of the p.Asp614Gly shift in the Spike (S) gene of SARS-CoV-2, there have been few recurring pathogenic shifts occurring during 2020, as assessed by genomic sequencing. This situation has evolved in the last several months with the emergence of several distinct variants (first identified in the United Kingdom and South Africa) that manifest multiple changes in the S gene, particularly p.Asn501Tyr (N501Y), that likely have clinical impact. We report here the emergence in Columbus, Ohio in December 2020 of two novel SARS-CoV-2 clade 20G variants. One variant, that has become the predominant virus found in nasopharyngeal swabs in the December 2020-January 2021 period, harbors S p.Gln677His (Q677H), affecting a consensus QTQTN domain near the S1/S2 furin cleavage site, nucleocapsid (N) p.Asp377Tyr (D377Y) and membrane glycoprotein (M) p.Ala85Ser (A85S) mutations, with additional S mutations in subsets. The other variant present in two samples, contains S N501Y, which is a marker of the UK-B.1.1.7 (clade 20I/501Y.V1) strain, but lacks all other mutations from that virus. The Ohio variant is from a different clade and shares multiple mutations with the clade 20G viruses circulating in the area prior to December 2020. These two SARS-CoV-2 viruses, which we show are also present and evolving currently in several other parts of North America, add to the diversity of S gene shifts occurring worldwide. These and other shifts in this period of the pandemic support multiple independent acquisition of functionally significant and potentially complementing mutations affecting the S QTQTN site (Q675H or Q677H) and certain receptor binding domain mutations (e.g., E484K and N501Y).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.