There is increasing evidence for strong genetic influences on athletic performance and for an evolutionary "trade-off" between performance traits for speed and endurance activities. We have recently demonstrated that the skeletal-muscle actin-binding protein alpha-actinin-3 is absent in 18% of healthy white individuals because of homozygosity for a common stop-codon polymorphism in the ACTN3 gene, R577X. alpha-Actinin-3 is specifically expressed in fast-twitch myofibers responsible for generating force at high velocity. The absence of a disease phenotype secondary to alpha-actinin-3 deficiency is likely due to compensation by the homologous protein, alpha-actinin-2. However, the high degree of evolutionary conservation of ACTN3 suggests function(s) independent of ACTN2. Here, we demonstrate highly significant associations between ACTN3 genotype and athletic performance. Both male and female elite sprint athletes have significantly higher frequencies of the 577R allele than do controls. This suggests that the presence of alpha-actinin-3 has a beneficial effect on the function of skeletal muscle in generating forceful contractions at high velocity, and provides an evolutionary advantage because of increased sprint performance. There is also a genotype effect in female sprint and endurance athletes, with higher than expected numbers of 577RX heterozygotes among sprint athletes and lower than expected numbers among endurance athletes. The lack of a similar effect in males suggests that the ACTN3 genotype affects athletic performance differently in males and females. The differential effects in sprint and endurance athletes suggests that the R577X polymorphism may have been maintained in the human population by balancing natural selection.
IL-15 receptor α (IL-15Rα) is a component of the heterotrimeric plasma membrane receptor for the pleiotropic cytokine IL-15. However, IL-15Rα is not merely an IL-15 receptor subunit, as mice lacking either IL-15 or IL-15Rα have unique phenotypes. IL-15 and IL-15Rα have been implicated in muscle phenotypes, but a role in muscle physiology has not been defined. Here, we have shown that loss of IL-15Rα induces a functional oxidative shift in fast muscles, substantially increasing fatigue resistance and exercise capacity. IL-15Rα-knockout (IL-15Rα-KO) mice ran greater distances and had greater ambulatory activity than controls. Fast muscles displayed fatigue resistance and a slower contractile phenotype. The molecular signature of these muscles included altered markers of mitochondrial biogenesis and calcium homeostasis. Morphologically, fast muscles had a greater number of muscle fibers, smaller fiber areas, and a greater ratio of nuclei to fiber area. The alterations of physiological properties and increased resistance to fatigue in fast muscles are consistent with a shift toward a slower, more oxidative phenotype. Consistent with a conserved functional role in humans, a genetic association was found between a SNP in the IL15RA gene and endurance in athletes stratified by sport. Therefore, we propose that IL-15Rα has a role in defining the phenotype of fast skeletal muscles in vivo.
This paper introduces a new sport and athlete development framework that has been generated by multidisciplinary sport practitioners. By combining current theoretical research perspectives with extensive empirical observations from one of the world's leading sport agencies, the proposed FTEM (Foundations, Talent, Elite, Mastery) framework offers broad utility to researchers and sporting stakeholders alike. FTEM is unique in comparison with alternative models and frameworks, because it: integrates general and specialised phases of development for participants within the active lifestyle, sport participation and sport excellence pathways; typically doubles the number of developmental phases (n = 10) in order to better understand athlete transition; avoids chronological and training prescriptions; more optimally establishes a continuum between participation and elite; and allows full inclusion of many developmental support drivers at the sport and system levels. The FTEM framework offers a viable and more flexible alternative for those sporting stakeholders interested in managing, optimising, and researching sport and athlete development pathways.
This investigation sought to contrast generalised models of athlete development with the specific pathway trajectories and transitions experienced by 256 elite athletes across 27 different sports. All participants completed the National Athlete Development Survey and within it, the Athlete Development Triangle featuring the differentiation of junior and senior competition experience and progression. Developmental initiation; prevalence, magnitude and direction of pathway trajectory; extent of concurrent junior and senior competitive experience; and variability between sports were examined. Three major trajectories were identified in relation to athlete transition from Nil competition to Elite competition, via junior and senior competition phases. These included Pure ascent (16.4%), Mixed ascent (26.2%) and Mixed descent (57.4%). These were further partitioned into eight sub-trajectories, demonstrating a mix of linear, crossover and concurrent competition profiles. Substantial variability with regard to starting age, pattern of ascent and magnitude of transition was apparent. Non-linear trajectories were experienced by the majority of athletes (83.6%), with pure junior to senior developmental linearity evident in less than 7% of cases. Athletes in cgs sports (those measured in centimetres, grams or seconds) were less likely (43%) to experience a descending trajectory in comparison with non-cgs athletes (70%; p<0.001). The collective findings of this investigation demonstrate that, contrary to the popular pyramidal concept of athlete development, a single linear assault on expertise is rare, and that the common normative junior to senior competition transition is mostly characterised by complex oscillations featuring highly varied transitions. More developmental 'granularity' is needed to advance our understanding of sport expertise.
The aims of this study were to talent transfer, rapidly develop, and qualify an Australian female athlete in the skeleton event at the 2006 Torino Winter Olympic Games and quantify the volume of skeleton-specific training and competition that would enable this to be achieved. Initially, 26 athletes were recruited through a talent identification programme based on their 30-m sprint time. After attending a selection camp, 10 athletes were invited to undertake an intensified skeleton training programme. Four of these athletes were then selected to compete for Australia on the World Cup circuit. All completed runs and simulated push starts were documented over a 14-month period. The athlete who eventually represented Australia at the Torino Winter Olympic Games did so following approximately 300 start simulations and about 220 training/competition runs over a period of 14 months. Using a deliberate programming model, these findings provide a guide to the minimum exposure required for a novice skeleton athlete to reach Olympic representative standard following intensified sport-specific training. The findings of this study are discussed in the context of the deliberate practice theory and offer the term "deliberate programming" as an alternative way of incorporating all aspects of expert development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.