In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is ob viously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.
a b s t r a c tThis study compares the effectiveness of seven redox-mediating compounds namely, 1-hydrozybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), violuric acid (VA), syringaldehyde (SA), vanillin (VA), and 2,2 0 -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), which follow distinct oxidation pathways, for the degradation of trace organic contaminants (TrOCs). These redox-mediators were investigated for improved degradation of four TrOCs showing resistance to degradation by crude laccase from the white-rot fungus Pleurotus ostreatus. ABTS and VA achieved the highest degradation of the phenolic compounds (i.e., oxybenzone and pentachlorophenol), whereas the non-phenolic compounds (i.e., naproxen and atrazine) were best removed using VA or HBT. This implies that the non-phenolic compounds are more effectively removed by the radical species generated by the NeOH type mediators (i.e., VA and HBT), while removal of the phenolic compounds may depend more on the stability and the redox potential of the radicals generated from the mediator, irrespective of the type. Notably, enzyme stability was greatly affected by the NeOH type mediators but it was compensated by their rapid degradation capacity. Overall, VA and HBT (NeOH type) appear to be the best mediators for enhanced degradation of the selected compounds without causing significant toxicity in the effluent.
Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), have a wide range of toxic effects on humans and wildlife, and have been reported in a number of endangered sea turtle populations. The present study screened for POPs in a green sea turtle Chelonia mydas population in Peninsular Malaysia and investigated the maternal transfer and effects of POPs on embryonic development. At the Ma'Daerah Turtle Sanctuary, blood, eggs and hatchling blood were collected from 11 nesting female C. mydas. Samples were analysed for 83 PCBs, 23 OCPs and 19 PBDEs using gas chromatography with tandem mass spectrometry. The chemical profiles of eggs from individual turtles were significantly different, indicating variable contaminant uptake during foraging. There was evidence of maternal transfer of POPs to eggs and hatchlings, with significant correlations in sum of PCBs (ΣPCB), sum of PBDEs (ΣPBDE), γ-hexachlorocyclohexane (γ-HCH), trans-chlordane and mirex concentrations between maternal blood and eggs (p < 0.05, R 2 < 0.71), between eggs and hatchling blood (p < 0.05, R 2 < 0.83), and between maternal and hatchling blood (p < 0.05, R 2 < 0.61). In addition, there was congener-specific transfer of PCBs with less lipophilic congeners (e.g. PCB 99) more readily transferred to hatchlings than the more lipophilic congeners (e.g. PCBs 180 + 193). There was also a significant correlation between increasing egg POP concentration and decreasing hatchling mass:length ratio. POPs may therefore have subtle effects on the development of C. mydas eggs, which may compromise offshore dispersal and predator avoidance. KEY WORDS: Chelonia mydas · Persistent organic pollutants · Maternal transfer · Contamination profilesResale or republication not permitted without written consent of the publisher
Nghiem, L. D. (2015). Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: complementary role of membrane retention and enzymatic degradation. International Biodeterioration and Biodegradation, 99 115-122.Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: complementary role of membrane retention and enzymatic degradation AbstractLaccase-catalysed degradation of 30 trace organic contaminants (TrOCs) with diverse chemical structure was investigated in an enzymatic membrane reactor (EMR) equipped with an ultrafiltration membrane. Compared to the results from batch incubation tests, the EMR could facilitate degradation of some phenolic and a number of non-phenolic TrOCs. Laccase, which was completely retained by the membrane, formed a dynamic gel layer on the membrane surface onto which TrOCs were adsorbed. EMR investigations with active and heat-inactivated laccase confirmed that the TrOCs retained by the active laccase gel layer were eventually degraded. Redox-mediator addition to the EMR significantly extended the spectrum of efficiently degraded TrOCs, but a limited improvement was observed in batch tests. The results demonstrate the important role of TrOC retention by the enzyme gel layer dynamically formed on the membrane in achieving improved degradation of TrOCs by the mediator-assisted laccase system. Despite following the same hydrogen atom transfer pathway, the mediators tested (syringaldehyde and 1-hydroxybenzotriazole) exhibited TrOC-specific degradation improvement capacity. Laccase-catalysed degradation of 30 trace organic contaminants (TrOCs) with diverse
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.