Rheumatoid arthritis (RA) is a chronic infl ammatory disease of synovial joints that is associated with cartilage and bone destruction. Death Receptor 3 (DR3), a tumor necrosis factor (TNF) receptor superfamily member, has recently been associated with the pathogenesis of RA. We demonstrate that absence of DR3 confers resistance to the development of adverse bone pathology in experimental antigen-induced arthritis (AIA). DR3 ko mice exhibited a reduction in all histopathological hallmarks of AIA but, in particular, failed to develop subchondral bone erosions and were completely protected from this characteristic of AIA. In contrast, TNF-like protein 1A (TL1A), the ligand for DR3, exacerbated disease in a dose-and DR3-dependent fashion. Analysis of osteoclast number within AIA joint revealed a reduction in areas susceptible to bone erosion in DR3 ko mice, whereas in vitro osteoclastogenesis assays showed that TL1A could directly promote osteoclastogenesis in mouse and man. Treatment with antagonistic anti-TL1A mAb protected animals in a systemic model of RA disease collagen-induced arthritis. We therefore conclude that the DR3 -TL1A pathway regulates joint destruction in two murine models of arthritis and represents a potential novel target for therapeutic intervention in infl ammatory joint disease.
The cytokine IL-6 controls the survival, proliferation and effector characteristics of lymphocytes through activation of the transcription factors STAT1 and STAT3. While STAT3 activity is an ever-present feature of IL-6 signaling in CD4 + T cells, prior T-cell receptor activation limits the IL-6 control of STAT1 in effector and memory populations. Here we show that STAT1 phosphorylation in response to IL-6 was regulated by protein tyrosine phosphatases (PTPN2, PTPN22) expressed in response to the activation of naïve CD4 + T cells. Transcriptomic and chromatin immunoprecipitation-sequencing of IL-6 responses in naïve and effector memory CD4 + T cells showed how the suppression of STAT1 activation shaped the functional identity and effector characteristics of memory CD4 + T cells. Thus, protein tyrosine phosphatases induced by activation of naïve T cells determined the way activated or memory CD4 + T cells sensed and interpreted cytokine signals.
Tumor necrosis factor (TNF)-like cytokine (TL1A) is a T-cell costimulator that bolsters cytokine-induced activation through death receptor 3 (DR3). To explore the relationship between T-cell activation and TL1A responsiveness, flow cytometry profiled DR3 expression in resting and activated T cells. In human CD4+ T cells, DR3 was induced rapidly following activation and expressed prominently by interleukin (IL)-17-secreting T cells (Th17). Splenic T cells from wild-type and DR3-deficient mice showed that TL1A activation of DR3 inhibits Th17 generation (81±2.6% at 100 ng/ml TL1A) from naive T cells. This response was not associated with suppression of T-cell proliferation. Using neutralizing antibodies or T cells derived from genetically modified mice, TL1A inhibition of Th17 development was found to be independent of IL-2, IL-27, γIFN, IFNAR1, and STAT1. Under suboptimal TCR activation, TL1A continued to block IL-17A secretion, however, the reduced threshold of TCR engagement was now linked with an increase in TL1A-driven proliferation. In contrast, fully committed Th17 cells displayed an altered TL1A responsiveness and in the absence of TCR costimulation supported the maintenance of T cell IL-17A expression. Consequently, TL1A orchestrates unique outcomes in naive and effector T-helper cells, which may affect the proliferation, differentiation and maintenance of Th17 cells in peripheral compartments and inflamed tissues.—Jones, G. W., Stumhofer, J. S., Foster, T., Twohig, J.P., Hertzog, P., Topley, N., Williams, A. S., Hunter, C. A., Jenkins, B. J., Wang, E. C. Y., Jones, S. A. Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation.
Death receptor 3 (DR3, TNFRSF25), the closest family relative to tumor necrosis factor receptor 1, promotes CD4(+) T-cell-driven inflammatory disease. We investigated the in vivo role of DR3 and its ligand TL1A in viral infection, by challenging DR3-deficient (DR3(KO)) mice and their DR3(WT) littermates with the β-herpesvirus murine cytomegalovirus or the poxvirus vaccinia virus. The phenotype and function of splenic T-cells were analyzed using flow cytometry and molecular biological techniques. We report surface expression of DR3 by naive CD8(+) T cells, with TCR activation increasing its levels 4-fold and altering the ratio of DR3 splice variants. T-cell responses were reduced up to 90% in DR3(KO) mice during acute infection. Adoptive transfer experiments indicated this was dependent on T-cell-restricted expression of DR3. DR3-dependent CD8(+) T-cell expansion was NK and CD4 independent and due to proliferation, not decreased cell death. Notably, impaired immunity in DR3(KO) hosts on a C57BL/6 background was associated with 4- to 7-fold increases in viral loads during the acute phase of infection, and in mice with suboptimal NK responses was essential for survival (37.5%). This is the first description of DR3 regulating virus-specific T-cell function in vivo and uncovers a critical role for DR3 in mediating antiviral immunity.
Burnet proposed in the 1950's that the immune system is engaged in identifying and destroying abnormal cancerous cells. This process, termed immune surveillance, has been at the centre of intense debate for decades. Results using immunodeficient mice lend support to the immune surveillance hypothesis. We surmised that immune surveillance would be hampered by the inhibitory effect of naturally occurring FoxP3 þ regulatory T cells, a population of T cells shown to be present at an increased frequency in a variety of human tumours. The carcinogen, methylcholanthrene was injected subcutaneously into mice and the steady development of fibrosarcomas was observed over approximately 200 days. These fibrosarcomas were strikingly infiltrated with FoxP3 þ regulatory T cells implying that these cells impinge upon immune-mediated rejection of the tumour. This was confirmed by partial ablation of FoxP3 þ regulatory T-cell activity, which resulted in a marked reduction in tumour incidence. The reduction of tumour incidence was ablated in mice that lacked interferon gamma. These data offer strong support for the concept of immune surveillance and indicate that this process is limited by the inhibitory effect of FoxP3 þ regulatory T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.