The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.
AimIn recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local-scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local-scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional-scale assemblages across continents. The present work aims to address this prediction.Location North and South America. MethodsWe combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1°and 5°map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. ResultsThe results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusionThe results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional-scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.
One Sentence Summary: Empirical evidence from grasslands around the world demonstrates a humped-back relationship between plant species richness and biomass at the 1 m 2 plot scale.Abstract: One of the central problems of ecology is the prediction of species diversity. The humped-back model (HBM) suggests that plant diversity is highest at intermediate levels of productivity; at low productivity few species can tolerate the environmental stresses and at high productivity a small number of highly competitive species dominate. A recent study claims to have comprehensively refuted the HBM. Here we show, using the largest, most geographically diverse dataset ever compiled and specifically built for testing this model that if the conditions are met, namely a wide range in biomass at the 1 m 2 plot level and the inclusion of plant litter, the relationship between plant biomass and species richness is hump shaped, supporting the HBM. Our findings shed new light on the prediction of plant diversity in grasslands, which is crucial for supporting management practices for effective conservation of biodiversity. 4Main Text: The relationship between plant diversity and productivity is a topic of intense debate (1-6). The HBM states that plant species richness peaks at intermediate productivity, taking above-ground biomass as a proxy for annual net primary productivity (ANPP) (7-9). This diversity peak is driven by two opposing processes; in unproductive and disturbed ecosystems where there is low plant biomass, species richness is limited by either stress, such as insufficient water and mineral nutrients, or high levels of disturbance-induced removal of biomass, which few species are able to tolerate. In contrast, in the low disturbance and productive conditions that generate high plant biomass it is competitive exclusion by a small number of highly competitive species that is hypothesized to constrain species richness (7-9). Other mechanisms proposed to explain the unimodal relationship between species richness and productivity include disturbance (10), evolutionary history and dispersal limitation (11,12), and density limitation affected by plant size (13).Different case studies have supported or rejected the HBM, and three separate meta-analyses reached different conclusions (14). This inconsistency may indicate a lack of generality of the HBM, or it may reflect a sensitivity to study characteristics including the type(s) of plant communities considered, the taxonomic scope, the length of the gradient sampled, the spatial grain and extent of analyses (14,15), and the particular measure of net primary productivity (16). Although others would argue (6), we maintain that the question remains whether the HBM serves as a useful and general model for grassland ecosystem theory and management. 5 We quantified the form and strength of the richness-productivity relationship using novel data from a globally-coordinated (17), distributed, scale-standardized and consistently designed survey, in which plant richness and biomass were m...
BackgroundReduced microbial diversity in human intestines has been implicated in various conditions such as diabetes, colorectal cancer, and inflammatory bowel disease. The role of physical fitness in the context of human intestinal microbiota is currently not known. We used high-throughput sequencing to analyze fecal microbiota of 39 healthy participants with similar age, BMI, and diets but with varying cardiorespiratory fitness levels. Fecal short-chain fatty acids were analyzed using gas chromatography.ResultsWe showed that peak oxygen uptake (VO2peak), the gold standard measure of cardiorespiratory fitness, can account for more than 20 % of the variation in taxonomic richness, after accounting for all other factors, including diet. While VO2peak did not explain variation in beta diversity, it did play a significant role in explaining variation in the microbiomes’ predicted metagenomic functions, aligning positively with genes related to bacterial chemotaxis, motility, and fatty acid biosynthesis. These predicted functions were supported by measured increases in production of fecal butyrate, a short-chain fatty acid associated with improved gut health, amongst physically fit participants. We also identified increased abundances of key butyrate-producing taxa (Clostridiales, Roseburia, Lachnospiraceae, and Erysipelotrichaceae) amongst these individuals, which likely contributed to the observed increases in butyrate levels.ConclusionsResults from this study show that cardiorespiratory fitness is correlated with increased microbial diversity in healthy humans and that the associated changes are anchored around a set of functional cores rather than specific taxa. The microbial profiles of fit individuals favor the production of butyrate. As increased microbiota diversity and butyrate production is associated with overall host health, our findings warrant the use of exercise prescription as an adjuvant therapy in combating dysbiosis-associated diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0189-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.