Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.
It is demonstrated that the silicon atom dangling bond (DB) state serves as a quantum dot. Coulomb repulsion causes DBs separated by less, similar2 nm to exhibit reduced localized charge, which enables electron tunnel coupling of DBs. Scanning tunneling microscopy measurements and theoretical modeling reveal that fabrication geometry of multi-DB assemblies determines net occupation and tunnel coupling strength among dots. Electron occupation of DB assemblies can be controlled at room temperature. Electrostatic control over charge distribution within assemblies is demonstrated.
It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained.Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen-terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short-circuiting by the substrate. We deploy paired dangling bonds occupied by one moveable electron to form a binary electronic building block.Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a "binary wire" and an OR gate.The prospect of atom scale computing was initially indicated by "molecular cascades"where sequentially toppling molecules were arranged in precise configurations to achieve binary logic functions 1 . Many notable approaches toward molecular electronics 2-7 , atomic electronics 8,9 , and quantum-dot-based electronics 10-15 have also been explored.The quantum dot based approaches [16][17][18][19][20] are particularly attractive, as they provide a low power yet fast basis 21 to go beyond today's CMOS technology 22 . These approaches, however, require cryogenic temperatures to minimize the population of thermally-excited states and achieve the desired functionality. Variability among quantum dots and sensitivity to uncontrolled fields are
At the atomic scale, there has always been a trade-off between the ease of fabrication of structures and their thermal stability. Complex structures that are created effortlessly often disorder above cryogenic conditions. Conversely, systems with high thermal stability do not generally permit the same degree of complex manipulations. Here, we report scanning tunneling microscope (STM) techniques to substantially improve automated hydrogen lithography (HL) on silicon, and to transform state-of-the-art hydrogen repassivation into an efficient, accessible error correction/editing tool relative to existing chemical and mechanical methods. These techniques are readily adapted to many STMs, together enabling fabrication of error-free, room-temperature stable structures of unprecedented size. We created two rewriteable atomic memories (1.1 petabits per in2), storing the alphabet letter-by-letter in 8 bits and a piece of music in 192 bits. With HL no longer faced with this trade-off, practical silicon-based atomic-scale devices are poised to make rapid advances towards their full potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.