The MUC7 12-mer (RKSYKCLHKRCR) is a cationic antimicrobial peptide derived from the human salivary mucin MUC7. To study its effect/mechanism of action on fungi, we performed a fitness screen of a tagged, diploid, homozygous gene deletion mutant pool of the yeast Saccharomyces cerevisiae grown in the presence of the MUC7 peptide. Forty-five strains exhibiting reduced fitness and 13 strains exhibiting increased fitness (sensitivity or resistance, respectively) were identified by hybridization intensities to tag arrays. The strongest fitness defects were observed with deletions in genes encoding elements of the RIM101 signaling pathway (regulating response to alkaline and neutral pH and other environmental conditions) and of the endosomal sorting complex required for transport (ESCRT; functioning mainly in protein sorting for degradation, but also required for activation of the RIM101 pathway). Other deletions identified as conferring fitness defect or gain are in genes associated with a variety of functions, including transcription regulation, protein trafficking, transport, metabolism, and others. The results of the pool fitness screen were validated by a set of mutant strains tested individually in the presence of the MUC7 12-mer. All tested RIM101-related deletion strains showing fitness defects confirmed their sensitivities. Taken together, the results led us to conclude that deletions of genes associated with the RIM101 pathway confer sensitivity to the peptide by preventing activation of this pathway and that this stress response plays a major role in the protection of S. cerevisiae against damage inflicted by the MUC7 12-mer peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.