Short sleep duration is associated with weight gain and obesity, diabetes, cardiovascular disease, psychiatric illness, and performance deficits. Likewise, long sleep duration is also associated with poor physical and mental health. The role of a healthy diet in habitual sleep duration represents a largely unexplored pathway linking sleep and health. This study evaluated associations between habitual sleep parameters and dietary/nutritional variables obtained via the National Health and Nutrition Examination Survey (NHANES), 2007–2008. We hypothesized that habitual very short (<5 h) short (5–6 h) and long (9+ h) sleep durations are associated with intake of a number of dietary nutrient variables. Overall, energy intake varied across very short (2036 kcal), short (2201 kcal), and long (1926 kcal) sleep duration, relative to normal (2151 kcal) sleep duration (p = 0.001). Normal sleep duration was associated with the greatest food variety (17.8), compared to very short (14.0), short (16.5) and long (16.3) sleep duration (p < 0.001). Associations between sleep duration were found across nutrient categories, with significant associations between habitual sleep duration and proteins, carbohydrates, vitamins and minerals. In stepwise analyses, significant contributors of unique variance included theobromine (long sleep RR = 0.910, p < 0.05), vitamin C (short sleep RR = 0.890, p < 0.05), tap water (short sleep RR = 0.952, p < 0.001; very short (<5 h) sleep RR = 0.941, p < 0.05), lutein + zeaxanthin (short sleep RR = 1.123, p < 0.05), dodecanoic acid (long sleep RR = 0.812, p < 0.05), choline (long sleep RR = 0.450, p = 0.001), lycopene (very short (<5 h) sleep RR = 0.950, p <0.05), total carbohydrate (very short (<5 h) sleep RR = 0.494, p <0.05; long sleep RR = 0.509, p <0.05), selenium (short sleep RR = 0.670, p <0.01) and alcohol (long sleep RR = 1.172, p < 0.01). Overall, many nutrient variables were associated with short and/or long sleep duration, which may be explained by differences in food variety. Future studies should assess whether these associations are due to appetite dysregulation, due to short/long sleep and/or whether these nutrients have physiologic effects on sleep regulation. In addition, these data may help us better understand the complex relationship between diet and sleep and the potential role of diet in the relationship between sleep and obesity and other cardiometabolic risks.
There has been considerable progress in elucidating the molecular mechanisms that contribute to memory formation and the generation of circadian rhythms. However, it is not well understood how these two processes interact to generate long-term memory. Recent studies in both vertebrate and invertebrate models have shown time-of-day effects on neurophysiology and memory formation, and have revealed a possible role for cycling molecules in memory persistence. Together, these studies suggest that common mechanisms underlie circadian rhythmicity and long-term memory formation.
Sleep symptoms are associated with weight gain and cardiometabolic disease. The potential role of diet has been largely unexplored. Data from the 2007–2008 NHANES were used (N=4,552) to determine which nutrients were associated with sleep symptoms in a nationally-representative sample. Survey items assessed difficulty falling asleep, sleep maintenance difficulties, non-restorative sleep, and daytime sleepiness. Analyses were adjusted for energy intake, other dietary factors, exercise, BMI and sociodemographics. Population-weighted, logistic regression, with backwards-stepwise selection, examined which nutrients were associated with sleep symptoms. Odds ratios (ORs) reflect the difference in odds of sleep symptoms associated with a doubling in nutrient. Nutrients that were independently associated with difficulty falling asleep included (in order): Alpha-Carotene (OR=0.96), Selenium (OR=0.80), Dodecanoic Acid (OR=0.91), Calcium (OR=0.83), and Hexadecanoic Acid (OR=1.10). Nutrients that were independently associated with sleep maintenance difficulties included: Salt (OR=1.19), Butanoic Acid (0,81), Carbohydrate (OR=0.71), Dodecanoic Acid (OR=0.90), Vitamin D (OR=0.84),, Lycopene (OR=0.98), Hexanoic Acid (OR= 1.25), and Moisture (OR=1.27). Nutrients that were independently associated with non-restorative sleep included Butanoic Acid (OR=1.09), Calcium (OR=0.81), Vitamin C (OR=0.92), Water (OR=0.98), Moisture (OR= 1.41), and Cholesterol (OR= 1.10). Nutrients that were independently associated with sleepiness included: Moisture (OR=1.20), Theobromine (OR=1.04), Potassium (OR= 0.70), Water (OR=0.97). These results suggest novel associations between sleep symptoms and diet/metabolism, potentially explaining associations between sleep and cardiometabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.