The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is an interdisciplinary investigation to improve understanding of Earth's ocean ecosystem-aerosol-cloud system. Specific overarching science objectives for NAAMES are to (1) characterize plankton ecosystem properties during primary phases of the annual cycle and their dependence on environmental forcings, (2) determine how these phases interact to recreate each year the conditions for an annual plankton bloom, and (3) resolve how remote marine aerosols and boundary layer clouds are influenced by plankton ecosystems. Four NAAMES field campaigns were conducted in the western subarctic Atlantic between November 2015 and April 2018, with each campaign targeting specific Behrenfeld et al. NAAMES Overview seasonal events in the annual plankton cycle. A broad diversity of measurements were collected during each campaign, including ship, aircraft, autonomous float and drifter, and satellite observations. Here, we present an overview of NAAMES science motives, experimental design, and measurements. We then briefly describe conditions and accomplishments during each of the four field campaigns and provide information on how to access NAAMES data. The intent of this manuscript is to familiarize the broad scientific community with NAAMES and to provide a common reference overview of the project for upcoming publications.
SummaryWe compare the nutrient-dependent photosynthetic efficiencies of the chlorophyte, Dunaliella tertiolecta, with those of the marine diatom, Thalassiosira weissflogii. Despite considerable evolutionary and physiological differences, these two species appear to use nearly identical growth strategies under a wide range of nutrient limitation.Using a variety of physiological measurements, we find that, for both species and across all growth rates, 75% of the gross photosynthetic electron flow is invested in carbon fixation and only 30% is retained as net carbon accumulation. A majority of gross photosynthesis (70%) is ultimately used as reductant for biosynthetic pathways and for the generation of ATP.In both species, newly formed carbon products exhibit much shorter half-lives at slow growth rates than at fast growth rates. We show that this growth rate dependence is a result of increased polysaccharide storage during the S phase of the cell cycle.We present a model of carbon utilization that incorporates this growth rate-dependent carbon allocation and accurately captures (r 2 = 0.94) the observed time-resolved carbon retention. Together, our findings suggest a common photosynthetic optimization strategy in evolutionarily distinct phytoplankton species and contribute towards a systems-level understanding of carbon flow in photoautotrophs.
The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar-and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20µm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which picoand nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.