The human cytochrome P4503A forms show expression patterns subject to developmental influence. CYP3A7 and CYP3A4 are generally classified as the major fetal and adult liver forms, respectively. However, characterization of CYP3A4, -3A5, and -3A7 developmental expression has historically been confounded by the lack of CYP3A isoform-specific antibodies or marker enzyme activities. Therefore, the objective of this study was to characterize the developmental expression of hepatic CYP3A forms from early gestation to 18 years of age using up to 212 fetal and pediatric liver samples. Based on immunoquantitation, CYP3A5 protein expression was found to be highly variable, generally independent of age, and more frequently observed for African-American individuals. For differentiation of CYP3A4 and -3A7 levels, dehydroepiandrosterone metabolite patterns for expressed CYP3A forms were characterized and used for simultaneous quantitation of protein levels within liver microsome samples. The major metabolite formed by CYP3A4, 7-hydroxy-dehydroepiandrosterone, was identified based on cochromatography and mass spectra matching with the authentic standard. Kinetic analysis showed a 34-fold greater intrinsic clearance of 7-hydroxy-dehydroepiandrosterone by CYP3A4 versus -3A7, whereas CYP3A7 showed the highest 16␣-hydroxy-dehydroepiandrosterone intrinsic clearance. Metabolite profiles for the expressed enzymes were fit to a multiple response model and CYP3A4 and -3A7 levels in fetal and pediatric liver microsome samples were calculated. Fetal liver microsomes showed extremely high CYP3A7 levels (311-158 pmol/mg protein) and significant expression through 6 months postnatal age. Low CYP3A4 expression was noted for fetal liver (Յ10 pmol/mg), with mean levels increasing with postnatal age.
BackgroundTGFβ signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFβ’s immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFβ pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses.ResultsIn vitro treatment with galunisertib reversed TGFβ and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFβ and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy.ConclusionsTogether these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.
The CYP2C subfamily is responsible for metabolizing many important drugs and accounts for about 20% of the cytochrome P450 in adult liver. To determine developmental expression patterns, liver microsomal CYP2C9 and -2C19 were measured (n ϭ 237; ages, 8 weeks gestation-18 years) by Western blotting and with diclofenac or mephenytoin, respectively, as probe substrates. CYP2C9-specific content and catalytic activity were consistent with expression at 1 to 2% of mature values (i.e., specific content, 18.3 pmol/mg protein and n ϭ 79; specific activity, 549.5 pmol/mg/min and n ϭ 72) during the first trimester, with progressive increases during the second and third trimesters to levels approximately 30% of mature values. From birth to 5 months, CYP2C9 protein values varied 35-fold and were significantly higher than those observed during the late fetal period, with 51% of samples exhibiting values commensurate with mature levels. Less variable CYP2C9 protein and activity values were observed between 5 months and 18 years. CYP2C19 protein and catalytic activities that were 12 to 15% of mature values (i.e., specific content, 14.6 pmol/mg and n ϭ 20; specific activity, 18.5 pmol/mg/min and n ϭ 19) were observed as early as 8 weeks of gestation and were similar throughout the prenatal period. CYP2C19 expression did not change at birth, increased linearly over the first 5 postnatal months, and varied 21-fold from 5 months to 10 years. Adult CYP2C19 protein and activity values were observed in samples older than 10 years. The ontogeny of CYP2C9 and -2C19 were dissimilar among both fetal and 0-to 5-months postnatal samples, implying different developmental regulatory mechanisms.
SummaryThe HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min−1 and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037).Electronic supplementary materialThe online version of this article (doi:10.1007/s10637-012-9912-9) contains supplementary material, which is available to authorized users.
Purpose: MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms.Experimental Design/Results: Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGFdependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGFresponsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875358 blocks HGF binding to MET and HGF-induced MET phosphorylation and cell proliferation. In contrast to the humanized one-armed 5D5 anti-MET antibody, LY2875358 induces internalization and degradation of MET that inhibits cell proliferation and tumor growth in models where MET is constitutively activated. Moreover, LY2875358 has potent antitumor activity in both HGF-dependent and HGF-independent (METamplified) xenograft tumor models. Together, these findings indicate that the mechanism of action of LY2875358 is different from that of the one-armed MET antibody.Conclusions: LY2875358 may provide a promising therapeutic strategy for patients whose tumors are driven by both HGF-dependent and HGF-independent MET activation. LY2875358 is currently being investigated in multiple clinical studies. Clin Cancer Res; 20(23); 6059-70. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.