A variety of factors, including admixture among multiple lineages, multiple modes of dispersal, and plasticity in reproductive strategy promote the invasion success of Phragmites a. australis. Wetland managers in the St. Lawrence River/Great Lakes region should focus monitoring efforts on the shores of conservation lands to prevent the establishment of propagules from novel lineages.
Levels of biomagnifying contaminants are greatest in high-trophic level biota (e.g., predatory birds such as gulls). Gull eggs have been used to assess contaminant spatial patterns and sources, but such assessments must consider how organism trophic position may influence spatial inferences. Stable nitrogen isotopes (δ N) in bulk tissue are routinely used in this context. However, bulk δ N values are only useful if spatial differences in baseline δ N values are considered. Amino acid compound-specific stable nitrogen isotope analysis can generate estimates of baseline δ N values and trophic position from the same sample. In the present study, eggs (n = 428) of California (Larus californicus), herring (Larus argentatus smithsonianus), and ring-billed (Larus delawarensis) gulls were used to assess spatial patterns in mercury (Hg) availability in 12 western Canadian lakes located over 14 degrees of latitude, with amino acid compound-specific stable isotope analysis adjustment of egg Hg levels for trophic position. Mean trophic position-adjusted egg Hg levels (micrograms per gram, dry wt) were greatest at sites in receiving waters of the Athabasca River (X¯ = 0.70) compared to southern (X¯ = 0.39) and northern (X¯ = 0.50) regions. Research is required to investigate factors (e.g., local Hg released as a result of human activities, processes influencing Hg methylation) which may be responsible for greater Hg availability in the lower Athabasca River basin. However, it is clear that amino acid compound-specific stable isotope analysis is a valuable tool for assessing contaminant spatial patterns. Environ Toxicol Chem 2018;37:1466-1475. © 2018 SETAC.
Elders and Indigenous land users in the Peace-Athabasca Delta (PAD) have observed a dramatic decline in the relative abundance of muskrat in recent decades (~1935–2014). The main explanation for the decline has been reduction in suitable habitat as a result of decades with reduced frequency of ice-jam flooding on the Peace River. Under favourable conditions, ice jams can cause flooding of perched basins within the PAD that would otherwise receive no recharge from floodwaters. To examine whether abundance of muskrat in the PAD is driven by flooding, we tested the predictions that the density of muskrat (estimated by winter counts of houses) (1) was inversely related to the number of years since major ice jam floods and (2) increased with water depth. An ongoing collaborative monitoring program initiated in 2011, combined with analysis of data from past surveys (1973–2015), allowed Indigenous land users and scientists to document a 10 to 100-fold increase in the density of muskrat houses in 24 basins, over the two years following ice-jam flood events in the PAD. During 1973–2015, in the periods between major floods, density of houses dropped by approximately 79% for every year after a significant flood. In 27 basins surveyed from 2011 to 2015, density of muskrat houses increased by two orders of magnitude in the two years following a flood in the spring of 2014. Density of muskrat houses had a non-linear relationship with estimated depth of water at the time of fall freeze-up; the highest densities of muskrat houses were in basins with about 60 – 250 cm of water at the time of freeze-up. The depth of snow at the time of surveys did not have a strong relationship with the density of muskrat houses. However, few houses were counted in basins with more than 20 cm of snow, likely because deeper snow made it more difficult to conduct surveys and spot houses. Factors other than an increase in the depth of water at fall freeze-up may provide the mechanisms by which flooding affects muskrat. Density of muskrat houses is clearly tied to ice-jam flooding in the PAD. However, the local mechanisms by which floods affect muskrat are best understood by Indigenous land users and remain poorly understood by Western science. Indigenous peoples continue to regard muskrat as an indicator of ecological and cultural health of the PAD. This study highlights the value of consistent ecological monitoring that includes Indigenous knowledge.
Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.