Our goal is to recover a complete 3D model from a depth image of an object. Existing approaches rely on user interaction or apply to a limited class of objects, such as chairs. We aim to fully automatically reconstruct a 3D model from any category. We take an exemplar-based approach: retrieve similar objects in a database of 3D models using view-based matching and transfer the symmetries and surfaces from retrieved models. We investigate completion of 3D models in three cases: novel view (model in database); novel model (models for other objects of the same category in database); and novel category (no models from the category in database).
a) image (b) albedo (c) coarse-scale shading (d) shading detail Figure 1. We decompose an image (a) into three components: (b) albedo, (c) coarse-scale shading, and (d) shading detail. The albedo and coarse-scale shading represent surface color and directional lighting effect. The shading detail image captures fine-scale surface geometry, or material property. AbstractGeometric detail is a universal phenomenon in real world objects. It is an important component in object modeling, but not accounted for in current intrinsic image works. In this work, we explore using a non-parametric method to separate geometric detail from intrinsic image components. We further decompose an image as albedo * (coarse-scale shading + shading detail). Our decomposition offers quantitative improvement in albedo recovery and material classification.Our method also enables interesting image editing activities, including bump removal, geometric detail smoothing/enhancement and material transfer.
Early work in computer vision considered a host of geometric cues for both shape reconstruction [11] and recognition [14]. However, since then, the vision community has focused heavily on shading cues for reconstruction [1], and moved towards data-driven approaches for recognition [6]. In this paper, we reconsider these perhaps overlooked "boundary" cues (such as self occlusions and folds in a surface), as well as many other established constraints for shape reconstruction. In a variety of user studies and quantitative tasks, we evaluate how well these cues inform shape reconstruction (relative to each other) in terms of both shape quality and shape recognition. Our findings suggest many new directions for future research in shape reconstruction, such as automatic boundary cue detection and relaxing assumptions in shape from shading (e.g. orthographic projection, Lambertian surfaces).
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements ("lighter", "same as", "darker"). The best modern intrinsic image methods learn a map from image to albedo using rendered models and human judgements. This is convenient for practical methods, but cannot explain how a visual agent without geometric, surface and illumination models and a renderer could learn to recover intrinsic images. This paper describes a method that learns intrinsic image decomposition without seeing WHDR annotations, rendered data, or ground truth data. The method relies on paradigms -fake albedos and fake shading fields -together with a novel smoothing procedure that ensures good behavior at short scales on real images. Long scale error is controlled by averaging. Our method achieves WHDR scores competitive with those of strong recent methods allowed to see training WHDR annotations, rendered data, and ground truth data. Because our method is unsupervised, we can compute estimates of the test/train variance of WHDR scores; these are quite large, and it is unsafe to rely small differences in reported WHDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.