SummaryOestrogen receptor-α (ER) is the defining and driving transcription factor in the majority of breast cancers and its target genes dictate cell growth and endocrine response, yet genomic understanding of ER function has been restricted to model systems1-3. We now map genome-wide ER binding events, by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), in primary breast cancers from patients with different clinical outcome and in distant ER positive (ER+) metastases. We find that drug resistant cancers still have ER-chromatin occupancy, but that ER binding is a dynamic process, with the acquisition of unique ER binding regions in tumours from patients that are likely to relapse. The acquired, poor outcome ER regulatory regions observed in primary tumours reveal gene signatures that predict clinical outcome in ER+ disease exclusively. We find that the differential ER binding programme observed in tumours from patients with poor outcome is not due to the selection of a rare subpopulation of cells, but is due to the FoxA1-mediated reprogramming of ER binding on a rapid time scale. The parallel redistribution of ER and FoxA1 cis-regulatory elements in drug resistant cellular contexts is supported by histological co-expression of ER and FoxA1 in metastatic samples. By establishing transcription factor mapping in primary tumour material, we show that there is plasticity in ER binding capacity, with distinct combinations of cis-regulatory elements linked with the different clinical outcomes.
Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at p<5x10-8. The majority of credible risk SNPs in the new loci fall in distal regulatory elements, and by integrating in-silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention.
The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.