SUMMARY
A partial cDNA for Arsenic resistance protein 2 (Ars2) was originally identified in a screen for genes that conferred arsenic resistance. Here we show that Ars2 is a component of the nuclear RNA cap binding complex (CBC) and is critical for proliferation. Unlike other components of the CBC, Ars2 expression is linked to the proliferative state of the cell. Deletion of Ars2 causes developmental lethality. In adult mice, deletion of Ars2 led to bone marrow failure, while parenchymal organs composed of non-proliferating cells were unaffected. Depletion of Ars2 or CBP80 from proliferating cells impairs miRNA-mediated repression. Ars2 functions in miRNA biogenesis at the level of nuclear miRNA processing. Depletion of Ars2 protein led to alterations in primary miRNA processing and reduced levels of several miRNAs implicated in cellular transformation, including miR-21, let-7, and miR-155. These findings provide evidence for a role for Ars2 in RNA interference regulation during cell proliferation.
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-b of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.
Background: The Janus kinase (JAK) cascade is an essential and well-conserved pathway required to transduce signals for a variety of ligands in both vertebrates and invertebrates. While activation of the pathway is essential to many processes, mutations from mammals and Drosophila demonstrate that regulation is also critical. The SOCS (Suppressor Of Cytokine Signaling) proteins in mammals are regulators of the JAK pathway that participate in a negative feedback loop, as they are transcriptionally activated by JAK signaling. Examination of one Drosophila SOCS homologue, Socs36E, demonstrated that its expression is responsive to JAK pathway activity and it is capable of downregulating JAK signaling, similar to the well characterized mammalian SOCS.
Antigen engagement of the T-cell receptor (TCR) induces a rapid and dramatic decondensation of chromatin that is necessary for T-cell activation. This decondensation makes T-cells competent to respond to Interleukin-2 providing a mechanism to ensure clonotypic proliferation during an immune response. Using murine T-cells, we investigated the mechanism by which TCR signaling can initiate chromatin decondensation, focusing on the role of calcium mobilization. During T-cell activation, calcium is first released from intracellular stores, followed by influx of extracellular calcium via store operated calcium entry. We show that mobilization of intracellular calcium is required for TCR-induced chromatin decondensation. However, the decondensation is not dependent on the activity of the downstream transcription factor NFAT. Furthermore, we show that the influx of extracellular calcium is dispensable for initiating chromatin decondensation. Finally, we show that mobilization of calcium from intracellular stores is sufficient to induce decondensation, independent of TCR engagement. Collectively, our data suggest that chromatin decondensation in peripheral T-cells is controlled by modulating intracellular calcium levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.