We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in the CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components including amphiregulin and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial to suppress leptomeningeal metastasis in these preclinical models.
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointestinal tract. While therapies exist, response can be limited within the patient population. Researchers have thus studied mouse models of colitis to further understand pathogenesis and identify new treatment targets. Flow cytometry and RNA-sequencing can phenotype immune populations with single-cell resolution but provide no spatial context. Spatial context may be particularly important in colitis mouse models, due to the simultaneous presence of colonic regions that are involved or uninvolved with disease. These regions can be identified on hematoxylin and eosin (H&E)-stained colonic tissue slides based on the presence of abnormal or normal histology. However, detection of such regions requires expert interpretation by pathologists. This can be a tedious process that may be difficult to perform consistently across experiments. To this end, we trained a deep learning model to detect ‘Involved’ and ‘Uninvolved’ regions from H&E-stained colonic tissue slides. Our model was trained on specimens from controls and three mouse models of colitis–the dextran sodium sulfate (DSS) chemical induction model, the recently established intestinal epithelium-specific, inducible Klf5ΔIND (Villin-CreERT2;Klf5fl/fl) genetic model, and one that combines both induction methods. Image patches predicted to be ‘Involved’ and ‘Uninvolved’ were extracted across mice to cluster and identify histological classes. We quantified the proportion of ‘Uninvolved’ patches and ‘Involved’ patch classes in murine swiss-rolled colons. Furthermore, we trained linear determinant analysis classifiers on these patch proportions to predict mouse model and clinical score bins in a prospectively treated cohort of mice. Such a pipeline has the potential to reveal histological links and improve synergy between various colitis mouse model studies to identify new therapeutic targets and pathophysiological mechanisms.
Total knee arthroplasty (TKA) is the final treatment option for patients with advanced knee osteoarthritis (OA). Unfortunately, TKA surgery is accompanied by acute postoperative pain that is more severe than arthroplasty performed in other joints. Elucidating the molecular mechanisms specific to post-TKA pain necessitates an animal model that replicates clinical TKA procedures, induces acute postoperative pain, and leads to complete functional recovery. Here, we present a new preclinical TKA model in rats and report on functional and behavioral outcomes indicative of pain, analgesic efficacy, serum cytokine levels, and dorsal root ganglia (DRG) transcriptomes during the acute postoperative period. Following TKA, rats exhibited marked deficits in weight bearing that persisted for 28 days. Home cage locomotion, rearing, and gait were similarly impacted and recovered by day 14. Cytokine levels were elevated on postoperative days one and/or two. Treatment with morphine, ketorolac, or their combination improved weight bearing while gabapentin lacked efficacy. When TKA was performed in rats with OA, similar functional deficits and comparable recovery time courses were observed. Analysis of DRG transcriptomes revealed upregulation of transcripts linked to multiple molecular pathways including inflammation, MAPK signaling, and cytokine signaling and production. In summary, we developed a clinically relevant rat TKA model characterized by resolution of pain and functional recovery within five weeks and with pain-associated behavioral deficits that are partially alleviated by clinically administered analgesics, mirroring the postoperative experience of TKA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.