Several laboratory studies suggested that induced hypothermia during hemorrhagic shock improves survival. Inhaled hydrogen sulfide (H2S) induced hypothermia and decreased metabolism in mice and rats but not in piglets. We tested the hypothesis that i.v. H2S will induce hypothermia, reduce oxygen consumption (VO2), and improve outcome in prolonged hemorrhagic shock in pigs. We also assessed markers of organ injury (alanine aminotransferase, aspartate aminotransferase, creatine phosphokinase, creatinine, and troponin) and level of protein thiols to monitor H2S metabolism. In a prospective randomized study, pigs were subjected to volume-controlled hemorrhagic shock with limited fluid resuscitation to maintain MAP 30 mmHg or greater. The study group received infusion of H2S at 5 mg·kg·h; the control group received vehicle (n = 8 per group). Dose was based on the highest tolerated dose in pilot studies. Full resuscitation was initiated after 3 h. There were no differences in survival at 24 h between groups (2/8 in H2S vs. 3/8 in control group). Heart rate increased similarly during hemorrhagic shock in both groups. Cardiac output was better preserved in the delayed phase of hemorrhagic shock in the control group. Temperature and VO2 were similar in both groups during hemorrhagic shock and resuscitation. Markers of organ injury and protein thiols markedly increased in both groups with no differences between groups. In conclusion, we were not able to demonstrate the hypothermia-inducing effect or a reduction in VO2 from H2S infusion in our model of hemorrhagic shock in pigs. Our data mirror those seen in piglets and provide additional evidence of difficulty in translating the hypothermia effect of H2S to large animals in a clinically relevant postinsult paradigm.
Both ventricular fibrillation cardiac arrest (VFCA) and asphyxial cardiac arrest (ACA) are frequent causes of CA. However, only isolated reports compared cerebral blood flow (CBF) reperfusion patterns after different types of CA, and even fewer reports used methods that allow serial and regional assessment of CBF. We hypothesized that the reperfusion patterns of CBF will differ between individual types of experimental CA. In a prospective block-randomized study, fentanyl-anesthetized adult rats were subjected to 8 min VFCA or ACA. Rats were then resuscitated with epinephrine, bicarbonate, manual chest compressions and mechanical ventilation. After the return of spontaneous circulation, CBF was then serially assessed via arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cortex, thalamus, hippocampus and amygdala/piriform complex over 1 h resuscitation time (RT). Both ACA and VFCA produced significant temporal and regional differences in CBF. All regions in both models showed significant changes over time (p<0.01), with early hyperperfusion and delayed hypoperfusion. ACA resulted in early hyperperfusion in cortex and thalamus (both p<0.05 vs. amygdala/piriform complex). In contrast, VFCA induced early hyperperfusion only in cortex (p<0.05 vs. other regions). Hyperperfusion was prolonged after ACA, peaking at 7 min RT (RT7; 199% vs. BL, Baseline, in cortex and 201% in thalamus, p<0.05), then returning close to BL at ~ RT15. In contrast, VFCA model induced mild hyperemia, peaking at RT7, (141% vs. BL in cortex). Both ACA and VFCA showed delayed hypoperfusion (ACA, ~30% below BL in hippocampus and amygdala/piriform complex, p<0.05; VFCA, 34–41% below BL in hippocampus and amygdala/piriform complex, p<0.05). In conclusion, both ACA and VFCA in adult rats produced significant regional and temporal differences in CBF. In ACA, hyperperfusion was most pronounced in cortex and thalamus. In VFCA, the changes were more modest, with hyperperfusion seen only in cortex. Both insults resulted in delayed hypoperfusion in all regions. Both early hyperperfusion and delayed hypoperfusion may be important therapeutic targets. This study was approved by the University of Pittsburgh IACUC 1008816-1.
Background-Induction of profound hypothermia for emergency preservation and resuscitation (EPR) of trauma victims who experience exsanguination cardiac arrest may allow survival from otherwise-lethal injuries. Previously, we achieved intact survival of dogs from 2 hours of EPR after rapid hemorrhage. We tested the hypothesis that EPR would achieve good outcome if prolonged hemorrhage preceded cardiac arrest. Methods and Results-Two minutes after cardiac arrest from prolonged hemorrhage and splenic transection, dogs were randomized into 3 groups (nϭ7 each): (1) the cardiopulmonary resuscitation (CPR) group, resuscitated with conventional CPR, and the (2) EPR-I and (3) EPR-II groups, both of which received 20 L of a 2°C saline aortic flush to achieve a brain temperature of 10°C to 15°C. CPR or EPR lasted 60 minutes and was followed in all groups by a 2-hour resuscitation by cardiopulmonary bypass. Splenectomy was then performed. The CPR dogs were maintained at 38.0°C. In the EPR groups, mild hypothermia (34°C) was maintained for either 12 (EPR-I) or 36 (EPR-II) hours. Function and brain histology were evaluated 60 hours after rewarming in all dogs. Cardiac arrest occurred after 124Ϯ16 minutes of hemorrhage. In the CPR group, spontaneous circulation could not be restored without cardiopulmonary bypass; none survived. Twelve of 14 EPR dogs survived. Compared with the EPR-I group, the EPR-II group had better overall performance, final neurological deficit scores, and histological damage scores. Conclusions-EPR is superior to conventional CPR in facilitating normal recovery after cardiac arrest from trauma and prolonged hemorrhage. Prolonged mild hypothermia after EPR was critical for achieving intact neurological outcomes.
In a rat model of 6-minute ventricular fibrillation cardiac arrest, cardiopulmonary resuscitation or extracorporeal cardiopulmonary resuscitation leads to survival with intact neurologic outcomes. Twelve hours of mild hypothermia attenuated neuronal death in subiculum and thalamus but not CA1 and, surprisingly, increased the microglial response. Resuscitation from ventricular fibrillation cardiac arrest and rigorous temperature control with extracorporeal cardiopulmonary resuscitation in a rat model is feasible, regionally neuroprotective, and alters neuroinflammation versus standard resuscitation. The use of experimental extracorporeal cardiopulmonary resuscitation should be explored using longer insult durations.
We have used a rapid induction of profound hypothermia ( < 101C) with delayed resuscitation using cardiopulmonary bypass (CPB) as a novel approach for resuscitation from exsanguination cardiac arrest (ExCA). We have defined this approach as emergency preservation and resuscitation (EPR). We observed that 2 h but not 3 h of preservation could be achieved with favorable outcome using ice-cold normal saline flush to induce profound hypothermia. We tested the hypothesis that adding energy substrates to saline during induction of EPR would allow intact recovery after 3 h CA. Dogs underwent rapid ExCA. Two minutes after CA, EPR was induced with arterial ice-cold flush. Four treatments (n = 6/group) were defined by a flush solution with or without 2.5% glucose (G + or GÀ) and with either oxygen or nitrogen (O + or OÀ) rapidly targeting tympanic temperature of 81C. At 3 h after CA onset, delayed resuscitation was initiated with CPB, followed by intensive care to 72 h. At 72 h, all dogs in the O + G + group regained consciousness, and the group had better neurological deficit scores and overall performance categories than the OÀgroups (both P < 0.05). In the O + GÀ group, four of the six dogs regained consciousness. All but one dog in the OÀgroups remained comatose. Brain histopathology in the OÀG + was worse than the other three groups (P < 0.05). We conclude that EPR induced with a flush solution containing oxygen and glucose allowed satisfactory recovery of neurological function after a 3 h of CA, suggesting benefit from substrate delivery during induction or maintenance of a profound hypothermic CA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.