ABSTRACT:Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) are inhibitors and substrates for various human sulfotransferases (SULTs). Although the rat is often used in toxicological studies on PCBs, the interactions of OH-PCBs with rat SULTs are less well understood. In the present study, 15 OH-PCBs were investigated as potential substrates or inhibitors of purified recombinant rSULT1A1 and rSULT2A3, the major family 1 and family 2 SULTs present in rat liver, respectively. None of these OH-PCBs were substrates for rSULT2A3, 11 weakly inhibited rSULT2A3-catalyzed sulfation of dehydroepiandrosterone, and 4 had no effect on the reaction. With rSULT1A1, 4-OH-PCB 8, 4-OH-PCB 3, 9, 12, 35, and 6-OH-PCB 35 were substrates, whereas 4-OH-PCB 6, 4-OH-PCB 14, 4-OH-PCB 25, 4-OH-PCB 33, 4-OH-PCB 34, 4-OH-PCB36, 4-OH-PCB 36, 4-OH-PCB 68, and 4-OH-PCB 78 inhibited the sulfation of 2-naphthol catalyzed by this enzyme. OH-PCBs with a 3,5-dichloro-4-hydroxy substitution were the most potent inhibitors of rSULT1A1, and the placement of chlorine atoms in the ortho-and meta-positions on either ring of para-OH-PCBs resulted in significant differences in activity as substrates and inhibitors. The specificity of rSULT1A1 for several inhibitory OH-PCBs was altered by pretreatment of the enzyme with oxidized glutathione (GSSG). Four OH-PCBs that were inhibitors of rSULT1A1 under reducing conditions became substrates after pretreatment of the enzyme with GSSG. This alteration in specificity of rSULT1A1 for certain OH-PCBs suggests that conditions of oxidative stress may significantly alter the sulfation of some OH-PCBs in the rat.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.