Feedback from massive stars plays a key role in molecular cloud evolution. After the onset of star formation, the young stellar population is exposed by photoionization, winds, supernovae, and radiation pressure from massive stars. Recent observations of nearby galaxies have provided the evolutionary timeline between molecular clouds and exposed young stars, but the duration of the embedded phase of massive star formation is still ill-constrained. We measure how long massive stellar populations remain embedded within their natal cloud, by applying a statistical method to six nearby galaxies at $20{-}100 {{\rm ~pc}}$ resolution, using CO, Spitzer 24$\rm \, \mu m$, and Hα emission as tracers of molecular clouds, embedded star formation, and exposed star formation, respectively. We find that the embedded phase (with CO and 24$\rm \, \mu m$ emission) lasts for 2 − 7 Myr and constitutes $17{-}47\%$ of the cloud lifetime. During approximately the first half of this phase, the region is invisible in Hα, making it heavily obscured. For the second half of this phase, the region also emits in Hα and is partially exposed. Once the cloud has been dispersed by feedback, 24$\rm \, \mu m$ emission no longer traces ongoing star formation, but remains detectable for another 2 − 9 Myr through the emission from ambient CO-dark gas, tracing star formation that recently ended. The short duration of massive star formation suggests that pre-supernova feedback (photoionization and winds) is important in disrupting molecular clouds. The measured timescales do not show significant correlations with environmental properties (e.g. metallicity). Future JWST observations will enable these measurements routinely across the nearby galaxy population.
It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in-situ. We distinguish between these two scenarios by characterising the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalised by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically-structured associations are formed in-situ.
We report the first extragalactic detection of the complex organic molecules (COMs) dimethyl ether (CH 3 OCH 3 ) and methyl formate (CH 3 OCHO) with the Atacama Large Millimeter/submillimeter Array (ALMA). These COMs, together with their parent species methanol (CH 3 OH), were detected toward two 1.3 mm continuum sources in the N 113 star-forming region in the low-metallicity Large Magellanic Cloud (LMC). Rotational temperatures (T 130 rot~K ) and total column densities (N 10 rot 16 cm −2 ) have been calculated for each source based on multiple transitions of CH 3 OH. We present the ALMA molecular emission maps for COMs and measured abundances for all detected species. The physical and chemical properties of two sources with COMs detection, and the association with H 2 O and OH maser emission, indicate that they are hot cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift.
Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.
Historically, it has often been asserted that most stars form in compact clusters. In this scenario, present-day gravitationally-unbound OB associations are the result of the expansion of initially gravitationally-bound star clusters. However, this paradigm is inconsistent with recent results, both theoretical and observational, that instead favour a hierarchical picture of star formation in which stars are formed across a continuous distribution of gas densities and most OB associations never were bound clusters. Instead they are formed in-situ as the lowdensity side of this distribution, rather than as the remnants of expanding clusters. We utilise the second Gaia data release to quantify the degree to which OB associations are undergoing expansion and, therefore, whether OB associations are the product of expanding clusters, or whether they were born in-situ, as the large-scale, globally-unbound associations that we see today. We find that the observed kinematic properties of associations are consistent with highly substructured velocity fields and additionally require some degree of localised expansion from sub-clusters within the association. While most present-day OB associations do exhibit low levels of expansion, there is no significant correlation between radial velocity and radius. Therefore, the large-scale structure of associations is not set by the expansion of clusters, rather it is a relic of the molecular gas cloud from which the association was formed. This finding is inconsistent with a monolithic model of association formation and instead favours a hierarchical model, in which OB associations form in-situ, following the fractal structure of the gas from which they form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.